metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3977498
- loss:CachedMultipleNegativesRankingLoss
widget:
- source_sentence: >-
While the prevalence of smoking in the United States general population
has declined over the past 50 years, there has been little to no decline
among people with mental health conditions. Affective Disorders (ADs) are
the most common mental health conditi
sentences:
- >-
The purpose of this study is to evaluate safety, tolerability and
efficacy of BZ371B in intubated patients with severe Acute Respiratory
Distress Syndrome.
- >-
Cigarettes Per Day, Cigarettes per day will be assessed for use of
cigarettes with different nicotine content., 16 weeks
- 'RADIATION: CyberKnife Stereotactic Radiosurgery'
- source_sentence: >-
A Study to Assess the Effect of a Normal vs. High Protein Diets in
Carbohydrates Metabolism in Obese Subjects With Diabetes or Prediabetes
sentences:
- 'DIETARY_SUPPLEMENT: Weight Loss'
- Parkinson's Disease
- >-
The objective of the study is to assess the effect of low-calorie diets
with normal (18%) vs. high (35%) protein (mainly coming from animal
source) composition on body weight and carbohydrates metabolism in
overweight and obese subjects with pre-diabetes o
- source_sentence: >-
In developed countries, stroke is the third leading cause of death and the
leading cause of permanent disability. Systemic and endovascular
thrombolytic treatments in acute cerebral ischemic stroke caused by
occlusion of large caliber vessels are currently
sentences:
- Stroke|Endovascular Thrombectomy|Ischemic Stroke
- >-
D2 receptor occupancy, To determine whether additional D2 receptor
occupancy can be accomplished with doses of 160 mg of lurasidone per
day., Up to 6 weeks
- headache frequency, headache days, 12 week
- source_sentence: >-
Adjunctive Oral Hygiene Aids in Reducing Oral Hygiene Parameters Among
Orthodontic Patients
sentences:
- Work of breathing
- Gingival Bleeding|Dental Plaque Accumulation
- Hemodialysis|Metabolic Syndrome X|Insulin Resistance
- source_sentence: Gaucher Disease
sentences:
- >-
Pregnancy Complications|Gestational Diabetes|Obstetric Labor
Complications|Neurodevelopmental Disorders|Childhood Obesity
- Premenstrual Syndrome (PMS)
- 'OTHER: Digital Engagement Application (GD App)|OTHER: No Intervention'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: ct pubmed clean eval
type: ct-pubmed-clean-eval
metrics:
- type: cosine_accuracy@1
value: 0.6569362716818584
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7522402984500596
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7922387600476904
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8404676743202184
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6569362716818584
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28274553542812453
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.185777470097304
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10339602322987579
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5430221548255469
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6531362790300814
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6998681289242362
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7595522516007772
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6889243452744613
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7148324881277467
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6491783814844273
name: Cosine Map@100
SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pankajrajdeo/BioForge-bioformer-16L-clinical-trials")
# Run inference
sentences = [
'Gaucher Disease',
'OTHER: Digital Engagement Application (GD App)|OTHER: No Intervention',
'Pregnancy Complications|Gestational Diabetes|Obstetric Labor Complications|Neurodevelopmental Disorders|Childhood Obesity',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
ct-pubmed-clean-eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.6569 |
| cosine_accuracy@3 | 0.7522 |
| cosine_accuracy@5 | 0.7922 |
| cosine_accuracy@10 | 0.8405 |
| cosine_precision@1 | 0.6569 |
| cosine_precision@3 | 0.2827 |
| cosine_precision@5 | 0.1858 |
| cosine_precision@10 | 0.1034 |
| cosine_recall@1 | 0.543 |
| cosine_recall@3 | 0.6531 |
| cosine_recall@5 | 0.6999 |
| cosine_recall@10 | 0.7596 |
| cosine_ndcg@10 | 0.6889 |
| cosine_mrr@10 | 0.7148 |
| cosine_map@100 | 0.6492 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,977,498 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 31.98 tokens
- max: 75 tokens
- min: 3 tokens
- mean: 30.28 tokens
- max: 102 tokens
- Samples:
anchor positive Kinesiotape for Edema After Bilateral Total Knee ArthroplastyThe purpose of this study is to determine if kinesiotaping for edema management will decrease post-operative edema in patients with bilateral total knee arthroplasty. The leg receiving kinesiotaping during inpatient rehabilitation may have decreased edemaKinesiotape for Edema After Bilateral Total Knee ArthroplastyArthroplasty ComplicationsThe purpose of this study is to determine if kinesiotaping for edema management will decrease post-operative edema in patients with bilateral total knee arthroplasty. The leg receiving kinesiotaping during inpatient rehabilitation may have decreased edemaChange from baseline and during 1-2-day time intervals of circumferences of both knees and lower extremities, Bilateral circumferences, in centimeters, at the following points: 10 cm above the superior pole of the patella; middle of the knee joint; calf ci - Loss:
CachedMultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 512learning_rate: 2e-05lr_scheduler_type: cosinewarmup_ratio: 0.05bf16: Truedataloader_num_workers: 16load_best_model_at_end: Truegradient_checkpointing: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 512per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 16dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss | ct-pubmed-clean-eval_cosine_ndcg@10 |
|---|---|---|---|
| 0.0129 | 100 | 2.2196 | - |
| 0.0257 | 200 | 1.7937 | - |
| 0.0386 | 300 | 1.5607 | - |
| 0.0515 | 400 | 1.4738 | - |
| 0.0644 | 500 | 1.4141 | - |
| 0.0772 | 600 | 1.3807 | - |
| 0.0901 | 700 | 1.3341 | - |
| 0.1030 | 800 | 1.3077 | - |
| 0.1158 | 900 | 1.3093 | - |
| 0.1287 | 1000 | 1.2638 | - |
| 0.1416 | 1100 | 1.2509 | - |
| 0.1545 | 1200 | 1.2333 | - |
| 0.1673 | 1300 | 1.2375 | - |
| 0.1802 | 1400 | 1.2022 | - |
| 0.1931 | 1500 | 1.1917 | - |
| 0.2059 | 1600 | 1.1853 | - |
| 0.2188 | 1700 | 1.1842 | - |
| 0.2317 | 1800 | 1.1748 | - |
| 0.2446 | 1900 | 1.1735 | - |
| 0.2574 | 2000 | 1.1457 | - |
| 0.2703 | 2100 | 1.1445 | - |
| 0.2832 | 2200 | 1.1448 | - |
| 0.2960 | 2300 | 1.1313 | - |
| 0.3089 | 2400 | 1.1301 | - |
| 0.3218 | 2500 | 1.1281 | - |
| 0.3347 | 2600 | 1.1139 | - |
| 0.3475 | 2700 | 1.1062 | - |
| 0.3604 | 2800 | 1.0989 | - |
| 0.3733 | 2900 | 1.1147 | - |
| 0.3862 | 3000 | 1.106 | - |
| 0.3990 | 3100 | 1.1074 | - |
| 0.4119 | 3200 | 1.0853 | - |
| 0.4248 | 3300 | 1.0918 | - |
| 0.4376 | 3400 | 1.0857 | - |
| 0.4505 | 3500 | 1.0774 | - |
| 0.4634 | 3600 | 1.0744 | - |
| 0.4763 | 3700 | 1.0799 | - |
| 0.4891 | 3800 | 1.0791 | - |
| 0.4999 | 3884 | - | 0.6628 |
| 0.5020 | 3900 | 1.077 | - |
| 0.5149 | 4000 | 1.0531 | - |
| 0.5277 | 4100 | 1.0449 | - |
| 0.5406 | 4200 | 1.0544 | - |
| 0.5535 | 4300 | 1.0496 | - |
| 0.5664 | 4400 | 1.0508 | - |
| 0.5792 | 4500 | 1.0649 | - |
| 0.5921 | 4600 | 1.0633 | - |
| 0.6050 | 4700 | 1.0576 | - |
| 0.6178 | 4800 | 1.0398 | - |
| 0.6307 | 4900 | 1.0311 | - |
| 0.6436 | 5000 | 1.0558 | - |
| 0.6565 | 5100 | 1.0355 | - |
| 0.6693 | 5200 | 1.0221 | - |
| 0.6822 | 5300 | 1.0188 | - |
| 0.6951 | 5400 | 1.0266 | - |
| 0.7079 | 5500 | 1.0254 | - |
| 0.7208 | 5600 | 1.0229 | - |
| 0.7337 | 5700 | 1.0199 | - |
| 0.7466 | 5800 | 1.0187 | - |
| 0.7594 | 5900 | 1.0143 | - |
| 0.7723 | 6000 | 1.0241 | - |
| 0.7852 | 6100 | 1.0174 | - |
| 0.7980 | 6200 | 1.0069 | - |
| 0.8109 | 6300 | 1.0008 | - |
| 0.8238 | 6400 | 1.0083 | - |
| 0.8367 | 6500 | 1.0047 | - |
| 0.8495 | 6600 | 1.0134 | - |
| 0.8624 | 6700 | 1.0021 | - |
| 0.8753 | 6800 | 0.9956 | - |
| 0.8881 | 6900 | 1.0 | - |
| 0.9010 | 7000 | 1.0098 | - |
| 0.9139 | 7100 | 0.9991 | - |
| 0.9268 | 7200 | 1.0003 | - |
| 0.9396 | 7300 | 0.965 | - |
| 0.9525 | 7400 | 0.9992 | - |
| 0.9654 | 7500 | 0.9889 | - |
| 0.9782 | 7600 | 0.9961 | - |
| 0.9911 | 7700 | 0.9912 | - |
| 0.9999 | 7768 | - | 0.6744 |
| 1.0040 | 7800 | 0.9734 | - |
| 1.0169 | 7900 | 0.9606 | - |
| 1.0297 | 8000 | 0.9552 | - |
| 1.0426 | 8100 | 0.953 | - |
| 1.0555 | 8200 | 0.9701 | - |
| 1.0683 | 8300 | 0.9603 | - |
| 1.0812 | 8400 | 0.9448 | - |
| 1.0941 | 8500 | 0.9332 | - |
| 1.1070 | 8600 | 0.9427 | - |
| 1.1198 | 8700 | 0.9512 | - |
| 1.1327 | 8800 | 0.9441 | - |
| 1.1456 | 8900 | 0.9509 | - |
| 1.1585 | 9000 | 0.9568 | - |
| 1.1713 | 9100 | 0.9473 | - |
| 1.1842 | 9200 | 0.9434 | - |
| 1.1971 | 9300 | 0.9329 | - |
| 1.2099 | 9400 | 0.932 | - |
| 1.2228 | 9500 | 0.9513 | - |
| 1.2357 | 9600 | 0.9476 | - |
| 1.2486 | 9700 | 0.933 | - |
| 1.2614 | 9800 | 0.9243 | - |
| 1.2743 | 9900 | 0.9422 | - |
| 1.2872 | 10000 | 0.9249 | - |
| 1.3000 | 10100 | 0.9297 | - |
| 1.3129 | 10200 | 0.9285 | - |
| 1.3258 | 10300 | 0.9364 | - |
| 1.3387 | 10400 | 0.9339 | - |
| 1.3515 | 10500 | 0.9395 | - |
| 1.3644 | 10600 | 0.9365 | - |
| 1.3773 | 10700 | 0.9223 | - |
| 1.3901 | 10800 | 0.926 | - |
| 1.4030 | 10900 | 0.925 | - |
| 1.4159 | 11000 | 0.9373 | - |
| 1.4288 | 11100 | 0.9304 | - |
| 1.4416 | 11200 | 0.9251 | - |
| 1.4545 | 11300 | 0.9315 | - |
| 1.4674 | 11400 | 0.9301 | - |
| 1.4802 | 11500 | 0.9292 | - |
| 1.4931 | 11600 | 0.9187 | - |
| 1.4998 | 11652 | - | 0.6844 |
| 1.5060 | 11700 | 0.9195 | - |
| 1.5189 | 11800 | 0.9251 | - |
| 1.5317 | 11900 | 0.9292 | - |
| 1.5446 | 12000 | 0.913 | - |
| 1.5575 | 12100 | 0.9262 | - |
| 1.5703 | 12200 | 0.9199 | - |
| 1.5832 | 12300 | 0.9216 | - |
| 1.5961 | 12400 | 0.9307 | - |
| 1.6090 | 12500 | 0.9257 | - |
| 1.6218 | 12600 | 0.9242 | - |
| 1.6347 | 12700 | 0.9225 | - |
| 1.6476 | 12800 | 0.9155 | - |
| 1.6604 | 12900 | 0.9175 | - |
| 1.6733 | 13000 | 0.9114 | - |
| 1.6862 | 13100 | 0.9201 | - |
| 1.6991 | 13200 | 0.9233 | - |
| 1.7119 | 13300 | 0.9129 | - |
| 1.7248 | 13400 | 0.9192 | - |
| 1.7377 | 13500 | 0.9042 | - |
| 1.7505 | 13600 | 0.9048 | - |
| 1.7634 | 13700 | 0.9116 | - |
| 1.7763 | 13800 | 0.9119 | - |
| 1.7892 | 13900 | 0.9095 | - |
| 1.8020 | 14000 | 0.909 | - |
| 1.8149 | 14100 | 0.9091 | - |
| 1.8278 | 14200 | 0.902 | - |
| 1.8406 | 14300 | 0.8988 | - |
| 1.8535 | 14400 | 0.9025 | - |
| 1.8664 | 14500 | 0.9031 | - |
| 1.8793 | 14600 | 0.9221 | - |
| 1.8921 | 14700 | 0.9022 | - |
| 1.9050 | 14800 | 0.9081 | - |
| 1.9179 | 14900 | 0.9051 | - |
| 1.9308 | 15000 | 0.9006 | - |
| 1.9436 | 15100 | 0.9158 | - |
| 1.9565 | 15200 | 0.9077 | - |
| 1.9694 | 15300 | 0.8976 | - |
| 1.9822 | 15400 | 0.899 | - |
| 1.9951 | 15500 | 0.9096 | - |
| 1.9997 | 15536 | - | 0.6843 |
| 2.0080 | 15600 | 0.8844 | - |
| 2.0209 | 15700 | 0.8738 | - |
| 2.0337 | 15800 | 0.8896 | - |
| 2.0466 | 15900 | 0.8892 | - |
| 2.0595 | 16000 | 0.8805 | - |
| 2.0723 | 16100 | 0.8732 | - |
| 2.0852 | 16200 | 0.8821 | - |
| 2.0981 | 16300 | 0.8903 | - |
| 2.1110 | 16400 | 0.8901 | - |
| 2.1238 | 16500 | 0.8844 | - |
| 2.1367 | 16600 | 0.8887 | - |
| 2.1496 | 16700 | 0.871 | - |
| 2.1624 | 16800 | 0.8776 | - |
| 2.1753 | 16900 | 0.8754 | - |
| 2.1882 | 17000 | 0.8949 | - |
| 2.2011 | 17100 | 0.8835 | - |
| 2.2139 | 17200 | 0.8694 | - |
| 2.2268 | 17300 | 0.8773 | - |
| 2.2397 | 17400 | 0.8808 | - |
| 2.2525 | 17500 | 0.8908 | - |
| 2.2654 | 17600 | 0.8854 | - |
| 2.2783 | 17700 | 0.8813 | - |
| 2.2912 | 17800 | 0.8813 | - |
| 2.3040 | 17900 | 0.8805 | - |
| 2.3169 | 18000 | 0.8666 | - |
| 2.3298 | 18100 | 0.8851 | - |
| 2.3426 | 18200 | 0.8719 | - |
| 2.3555 | 18300 | 0.8819 | - |
| 2.3684 | 18400 | 0.8695 | - |
| 2.3813 | 18500 | 0.8778 | - |
| 2.3941 | 18600 | 0.8673 | - |
| 2.4070 | 18700 | 0.8868 | - |
| 2.4199 | 18800 | 0.886 | - |
| 2.4327 | 18900 | 0.882 | - |
| 2.4456 | 19000 | 0.8701 | - |
| 2.4585 | 19100 | 0.874 | - |
| 2.4714 | 19200 | 0.8681 | - |
| 2.4842 | 19300 | 0.886 | - |
| 2.4971 | 19400 | 0.882 | - |
| 2.4997 | 19420 | - | 0.6884 |
| 2.5100 | 19500 | 0.8837 | - |
| 2.5228 | 19600 | 0.8765 | - |
| 2.5357 | 19700 | 0.8771 | - |
| 2.5486 | 19800 | 0.8727 | - |
| 2.5615 | 19900 | 0.8735 | - |
| 2.5743 | 20000 | 0.8765 | - |
| 2.5872 | 20100 | 0.8701 | - |
| 2.6001 | 20200 | 0.8804 | - |
| 2.6129 | 20300 | 0.8785 | - |
| 2.6258 | 20400 | 0.8719 | - |
| 2.6387 | 20500 | 0.8758 | - |
| 2.6516 | 20600 | 0.8868 | - |
| 2.6644 | 20700 | 0.8684 | - |
| 2.6773 | 20800 | 0.8636 | - |
| 2.6902 | 20900 | 0.8942 | - |
| 2.7031 | 21000 | 0.8726 | - |
| 2.7159 | 21100 | 0.8704 | - |
| 2.7288 | 21200 | 0.8728 | - |
| 2.7417 | 21300 | 0.8708 | - |
| 2.7545 | 21400 | 0.8654 | - |
| 2.7674 | 21500 | 0.8599 | - |
| 2.7803 | 21600 | 0.8714 | - |
| 2.7932 | 21700 | 0.8753 | - |
| 2.8060 | 21800 | 0.8793 | - |
| 2.8189 | 21900 | 0.8787 | - |
| 2.8318 | 22000 | 0.8797 | - |
| 2.8446 | 22100 | 0.876 | - |
| 2.8575 | 22200 | 0.8732 | - |
| 2.8704 | 22300 | 0.8687 | - |
| 2.8833 | 22400 | 0.871 | - |
| 2.8961 | 22500 | 0.8796 | - |
| 2.9090 | 22600 | 0.8812 | - |
| 2.9219 | 22700 | 0.8659 | - |
| 2.9347 | 22800 | 0.8625 | - |
| 2.9476 | 22900 | 0.8755 | - |
| 2.9605 | 23000 | 0.8767 | - |
| 2.9734 | 23100 | 0.8658 | - |
| 2.9862 | 23200 | 0.8751 | - |
| 2.9991 | 23300 | 0.8774 | - |
| 2.9996 | 23304 | - | 0.6889 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}