|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:3977498 |
|
|
- loss:CachedMultipleNegativesRankingLoss |
|
|
widget: |
|
|
- source_sentence: While the prevalence of smoking in the United States general population |
|
|
has declined over the past 50 years, there has been little to no decline among |
|
|
people with mental health conditions. Affective Disorders (ADs) are the most common |
|
|
mental health conditi |
|
|
sentences: |
|
|
- The purpose of this study is to evaluate safety, tolerability and efficacy of |
|
|
BZ371B in intubated patients with severe Acute Respiratory Distress Syndrome. |
|
|
- Cigarettes Per Day, Cigarettes per day will be assessed for use of cigarettes |
|
|
with different nicotine content., 16 weeks |
|
|
- 'RADIATION: CyberKnife Stereotactic Radiosurgery' |
|
|
- source_sentence: A Study to Assess the Effect of a Normal vs. High Protein Diets |
|
|
in Carbohydrates Metabolism in Obese Subjects With Diabetes or Prediabetes |
|
|
sentences: |
|
|
- 'DIETARY_SUPPLEMENT: Weight Loss' |
|
|
- Parkinson's Disease |
|
|
- The objective of the study is to assess the effect of low-calorie diets with normal |
|
|
(18%) vs. high (35%) protein (mainly coming from animal source) composition on |
|
|
body weight and carbohydrates metabolism in overweight and obese subjects with |
|
|
pre-diabetes o |
|
|
- source_sentence: In developed countries, stroke is the third leading cause of death |
|
|
and the leading cause of permanent disability. Systemic and endovascular thrombolytic |
|
|
treatments in acute cerebral ischemic stroke caused by occlusion of large caliber |
|
|
vessels are currently |
|
|
sentences: |
|
|
- Stroke|Endovascular Thrombectomy|Ischemic Stroke |
|
|
- D2 receptor occupancy, To determine whether additional D2 receptor occupancy can |
|
|
be accomplished with doses of 160 mg of lurasidone per day., Up to 6 weeks |
|
|
- headache frequency, headache days, 12 week |
|
|
- source_sentence: Adjunctive Oral Hygiene Aids in Reducing Oral Hygiene Parameters |
|
|
Among Orthodontic Patients |
|
|
sentences: |
|
|
- Work of breathing |
|
|
- Gingival Bleeding|Dental Plaque Accumulation |
|
|
- Hemodialysis|Metabolic Syndrome X|Insulin Resistance |
|
|
- source_sentence: Gaucher Disease |
|
|
sentences: |
|
|
- Pregnancy Complications|Gestational Diabetes|Obstetric Labor Complications|Neurodevelopmental |
|
|
Disorders|Childhood Obesity |
|
|
- Premenstrual Syndrome (PMS) |
|
|
- 'OTHER: Digital Engagement Application (GD App)|OTHER: No Intervention' |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy@1 |
|
|
- cosine_accuracy@3 |
|
|
- cosine_accuracy@5 |
|
|
- cosine_accuracy@10 |
|
|
- cosine_precision@1 |
|
|
- cosine_precision@3 |
|
|
- cosine_precision@5 |
|
|
- cosine_precision@10 |
|
|
- cosine_recall@1 |
|
|
- cosine_recall@3 |
|
|
- cosine_recall@5 |
|
|
- cosine_recall@10 |
|
|
- cosine_ndcg@10 |
|
|
- cosine_mrr@10 |
|
|
- cosine_map@100 |
|
|
model-index: |
|
|
- name: SentenceTransformer |
|
|
results: |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: ct pubmed clean eval |
|
|
type: ct-pubmed-clean-eval |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.6569362716818584 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.7522402984500596 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.7922387600476904 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.8404676743202184 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.6569362716818584 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.28274553542812453 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.185777470097304 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.10339602322987579 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.5430221548255469 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.6531362790300814 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.6998681289242362 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.7595522516007772 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.6889243452744613 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.7148324881277467 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.6491783814844273 |
|
|
name: Cosine Map@100 |
|
|
--- |
|
|
|
|
|
# SentenceTransformer |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> |
|
|
- **Maximum Sequence Length:** 256 tokens |
|
|
- **Output Dimensionality:** 384 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("pankajrajdeo/BioForge-bioformer-16L-clinical-trials") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'Gaucher Disease', |
|
|
'OTHER: Digital Engagement Application (GD App)|OTHER: No Intervention', |
|
|
'Pregnancy Complications|Gestational Diabetes|Obstetric Labor Complications|Neurodevelopmental Disorders|Childhood Obesity', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 384] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Dataset: `ct-pubmed-clean-eval` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:-----------| |
|
|
| cosine_accuracy@1 | 0.6569 | |
|
|
| cosine_accuracy@3 | 0.7522 | |
|
|
| cosine_accuracy@5 | 0.7922 | |
|
|
| cosine_accuracy@10 | 0.8405 | |
|
|
| cosine_precision@1 | 0.6569 | |
|
|
| cosine_precision@3 | 0.2827 | |
|
|
| cosine_precision@5 | 0.1858 | |
|
|
| cosine_precision@10 | 0.1034 | |
|
|
| cosine_recall@1 | 0.543 | |
|
|
| cosine_recall@3 | 0.6531 | |
|
|
| cosine_recall@5 | 0.6999 | |
|
|
| cosine_recall@10 | 0.7596 | |
|
|
| **cosine_ndcg@10** | **0.6889** | |
|
|
| cosine_mrr@10 | 0.7148 | |
|
|
| cosine_map@100 | 0.6492 | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 3,977,498 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 31.98 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 30.28 tokens</li><li>max: 102 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
|
| <code>Kinesiotape for Edema After Bilateral Total Knee Arthroplasty</code> | <code>The purpose of this study is to determine if kinesiotaping for edema management will decrease post-operative edema in patients with bilateral total knee arthroplasty. The leg receiving kinesiotaping during inpatient rehabilitation may have decreased edema </code> | |
|
|
| <code>Kinesiotape for Edema After Bilateral Total Knee Arthroplasty</code> | <code>Arthroplasty Complications|Arthroplasty, Replacement, Knee</code> | |
|
|
| <code>The purpose of this study is to determine if kinesiotaping for edema management will decrease post-operative edema in patients with bilateral total knee arthroplasty. The leg receiving kinesiotaping during inpatient rehabilitation may have decreased edema </code> | <code>Change from baseline and during 1-2-day time intervals of circumferences of both knees and lower extremities, Bilateral circumferences, in centimeters, at the following points: 10 cm above the superior pole of the patella; middle of the knee joint; calf ci</code> | |
|
|
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"scale": 20.0, |
|
|
"similarity_fct": "cos_sim" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 512 |
|
|
- `learning_rate`: 2e-05 |
|
|
- `lr_scheduler_type`: cosine |
|
|
- `warmup_ratio`: 0.05 |
|
|
- `bf16`: True |
|
|
- `dataloader_num_workers`: 16 |
|
|
- `load_best_model_at_end`: True |
|
|
- `gradient_checkpointing`: True |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 512 |
|
|
- `per_device_eval_batch_size`: 8 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 2e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 3 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: cosine |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.05 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: True |
|
|
- `fp16`: False |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 16 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: True |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `hub_revision`: None |
|
|
- `gradient_checkpointing`: True |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `liger_kernel_config`: None |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: batch_sampler |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
| Epoch | Step | Training Loss | ct-pubmed-clean-eval_cosine_ndcg@10 | |
|
|
|:------:|:-----:|:-------------:|:-----------------------------------:| |
|
|
| 0.0129 | 100 | 2.2196 | - | |
|
|
| 0.0257 | 200 | 1.7937 | - | |
|
|
| 0.0386 | 300 | 1.5607 | - | |
|
|
| 0.0515 | 400 | 1.4738 | - | |
|
|
| 0.0644 | 500 | 1.4141 | - | |
|
|
| 0.0772 | 600 | 1.3807 | - | |
|
|
| 0.0901 | 700 | 1.3341 | - | |
|
|
| 0.1030 | 800 | 1.3077 | - | |
|
|
| 0.1158 | 900 | 1.3093 | - | |
|
|
| 0.1287 | 1000 | 1.2638 | - | |
|
|
| 0.1416 | 1100 | 1.2509 | - | |
|
|
| 0.1545 | 1200 | 1.2333 | - | |
|
|
| 0.1673 | 1300 | 1.2375 | - | |
|
|
| 0.1802 | 1400 | 1.2022 | - | |
|
|
| 0.1931 | 1500 | 1.1917 | - | |
|
|
| 0.2059 | 1600 | 1.1853 | - | |
|
|
| 0.2188 | 1700 | 1.1842 | - | |
|
|
| 0.2317 | 1800 | 1.1748 | - | |
|
|
| 0.2446 | 1900 | 1.1735 | - | |
|
|
| 0.2574 | 2000 | 1.1457 | - | |
|
|
| 0.2703 | 2100 | 1.1445 | - | |
|
|
| 0.2832 | 2200 | 1.1448 | - | |
|
|
| 0.2960 | 2300 | 1.1313 | - | |
|
|
| 0.3089 | 2400 | 1.1301 | - | |
|
|
| 0.3218 | 2500 | 1.1281 | - | |
|
|
| 0.3347 | 2600 | 1.1139 | - | |
|
|
| 0.3475 | 2700 | 1.1062 | - | |
|
|
| 0.3604 | 2800 | 1.0989 | - | |
|
|
| 0.3733 | 2900 | 1.1147 | - | |
|
|
| 0.3862 | 3000 | 1.106 | - | |
|
|
| 0.3990 | 3100 | 1.1074 | - | |
|
|
| 0.4119 | 3200 | 1.0853 | - | |
|
|
| 0.4248 | 3300 | 1.0918 | - | |
|
|
| 0.4376 | 3400 | 1.0857 | - | |
|
|
| 0.4505 | 3500 | 1.0774 | - | |
|
|
| 0.4634 | 3600 | 1.0744 | - | |
|
|
| 0.4763 | 3700 | 1.0799 | - | |
|
|
| 0.4891 | 3800 | 1.0791 | - | |
|
|
| 0.4999 | 3884 | - | 0.6628 | |
|
|
| 0.5020 | 3900 | 1.077 | - | |
|
|
| 0.5149 | 4000 | 1.0531 | - | |
|
|
| 0.5277 | 4100 | 1.0449 | - | |
|
|
| 0.5406 | 4200 | 1.0544 | - | |
|
|
| 0.5535 | 4300 | 1.0496 | - | |
|
|
| 0.5664 | 4400 | 1.0508 | - | |
|
|
| 0.5792 | 4500 | 1.0649 | - | |
|
|
| 0.5921 | 4600 | 1.0633 | - | |
|
|
| 0.6050 | 4700 | 1.0576 | - | |
|
|
| 0.6178 | 4800 | 1.0398 | - | |
|
|
| 0.6307 | 4900 | 1.0311 | - | |
|
|
| 0.6436 | 5000 | 1.0558 | - | |
|
|
| 0.6565 | 5100 | 1.0355 | - | |
|
|
| 0.6693 | 5200 | 1.0221 | - | |
|
|
| 0.6822 | 5300 | 1.0188 | - | |
|
|
| 0.6951 | 5400 | 1.0266 | - | |
|
|
| 0.7079 | 5500 | 1.0254 | - | |
|
|
| 0.7208 | 5600 | 1.0229 | - | |
|
|
| 0.7337 | 5700 | 1.0199 | - | |
|
|
| 0.7466 | 5800 | 1.0187 | - | |
|
|
| 0.7594 | 5900 | 1.0143 | - | |
|
|
| 0.7723 | 6000 | 1.0241 | - | |
|
|
| 0.7852 | 6100 | 1.0174 | - | |
|
|
| 0.7980 | 6200 | 1.0069 | - | |
|
|
| 0.8109 | 6300 | 1.0008 | - | |
|
|
| 0.8238 | 6400 | 1.0083 | - | |
|
|
| 0.8367 | 6500 | 1.0047 | - | |
|
|
| 0.8495 | 6600 | 1.0134 | - | |
|
|
| 0.8624 | 6700 | 1.0021 | - | |
|
|
| 0.8753 | 6800 | 0.9956 | - | |
|
|
| 0.8881 | 6900 | 1.0 | - | |
|
|
| 0.9010 | 7000 | 1.0098 | - | |
|
|
| 0.9139 | 7100 | 0.9991 | - | |
|
|
| 0.9268 | 7200 | 1.0003 | - | |
|
|
| 0.9396 | 7300 | 0.965 | - | |
|
|
| 0.9525 | 7400 | 0.9992 | - | |
|
|
| 0.9654 | 7500 | 0.9889 | - | |
|
|
| 0.9782 | 7600 | 0.9961 | - | |
|
|
| 0.9911 | 7700 | 0.9912 | - | |
|
|
| 0.9999 | 7768 | - | 0.6744 | |
|
|
| 1.0040 | 7800 | 0.9734 | - | |
|
|
| 1.0169 | 7900 | 0.9606 | - | |
|
|
| 1.0297 | 8000 | 0.9552 | - | |
|
|
| 1.0426 | 8100 | 0.953 | - | |
|
|
| 1.0555 | 8200 | 0.9701 | - | |
|
|
| 1.0683 | 8300 | 0.9603 | - | |
|
|
| 1.0812 | 8400 | 0.9448 | - | |
|
|
| 1.0941 | 8500 | 0.9332 | - | |
|
|
| 1.1070 | 8600 | 0.9427 | - | |
|
|
| 1.1198 | 8700 | 0.9512 | - | |
|
|
| 1.1327 | 8800 | 0.9441 | - | |
|
|
| 1.1456 | 8900 | 0.9509 | - | |
|
|
| 1.1585 | 9000 | 0.9568 | - | |
|
|
| 1.1713 | 9100 | 0.9473 | - | |
|
|
| 1.1842 | 9200 | 0.9434 | - | |
|
|
| 1.1971 | 9300 | 0.9329 | - | |
|
|
| 1.2099 | 9400 | 0.932 | - | |
|
|
| 1.2228 | 9500 | 0.9513 | - | |
|
|
| 1.2357 | 9600 | 0.9476 | - | |
|
|
| 1.2486 | 9700 | 0.933 | - | |
|
|
| 1.2614 | 9800 | 0.9243 | - | |
|
|
| 1.2743 | 9900 | 0.9422 | - | |
|
|
| 1.2872 | 10000 | 0.9249 | - | |
|
|
| 1.3000 | 10100 | 0.9297 | - | |
|
|
| 1.3129 | 10200 | 0.9285 | - | |
|
|
| 1.3258 | 10300 | 0.9364 | - | |
|
|
| 1.3387 | 10400 | 0.9339 | - | |
|
|
| 1.3515 | 10500 | 0.9395 | - | |
|
|
| 1.3644 | 10600 | 0.9365 | - | |
|
|
| 1.3773 | 10700 | 0.9223 | - | |
|
|
| 1.3901 | 10800 | 0.926 | - | |
|
|
| 1.4030 | 10900 | 0.925 | - | |
|
|
| 1.4159 | 11000 | 0.9373 | - | |
|
|
| 1.4288 | 11100 | 0.9304 | - | |
|
|
| 1.4416 | 11200 | 0.9251 | - | |
|
|
| 1.4545 | 11300 | 0.9315 | - | |
|
|
| 1.4674 | 11400 | 0.9301 | - | |
|
|
| 1.4802 | 11500 | 0.9292 | - | |
|
|
| 1.4931 | 11600 | 0.9187 | - | |
|
|
| 1.4998 | 11652 | - | 0.6844 | |
|
|
| 1.5060 | 11700 | 0.9195 | - | |
|
|
| 1.5189 | 11800 | 0.9251 | - | |
|
|
| 1.5317 | 11900 | 0.9292 | - | |
|
|
| 1.5446 | 12000 | 0.913 | - | |
|
|
| 1.5575 | 12100 | 0.9262 | - | |
|
|
| 1.5703 | 12200 | 0.9199 | - | |
|
|
| 1.5832 | 12300 | 0.9216 | - | |
|
|
| 1.5961 | 12400 | 0.9307 | - | |
|
|
| 1.6090 | 12500 | 0.9257 | - | |
|
|
| 1.6218 | 12600 | 0.9242 | - | |
|
|
| 1.6347 | 12700 | 0.9225 | - | |
|
|
| 1.6476 | 12800 | 0.9155 | - | |
|
|
| 1.6604 | 12900 | 0.9175 | - | |
|
|
| 1.6733 | 13000 | 0.9114 | - | |
|
|
| 1.6862 | 13100 | 0.9201 | - | |
|
|
| 1.6991 | 13200 | 0.9233 | - | |
|
|
| 1.7119 | 13300 | 0.9129 | - | |
|
|
| 1.7248 | 13400 | 0.9192 | - | |
|
|
| 1.7377 | 13500 | 0.9042 | - | |
|
|
| 1.7505 | 13600 | 0.9048 | - | |
|
|
| 1.7634 | 13700 | 0.9116 | - | |
|
|
| 1.7763 | 13800 | 0.9119 | - | |
|
|
| 1.7892 | 13900 | 0.9095 | - | |
|
|
| 1.8020 | 14000 | 0.909 | - | |
|
|
| 1.8149 | 14100 | 0.9091 | - | |
|
|
| 1.8278 | 14200 | 0.902 | - | |
|
|
| 1.8406 | 14300 | 0.8988 | - | |
|
|
| 1.8535 | 14400 | 0.9025 | - | |
|
|
| 1.8664 | 14500 | 0.9031 | - | |
|
|
| 1.8793 | 14600 | 0.9221 | - | |
|
|
| 1.8921 | 14700 | 0.9022 | - | |
|
|
| 1.9050 | 14800 | 0.9081 | - | |
|
|
| 1.9179 | 14900 | 0.9051 | - | |
|
|
| 1.9308 | 15000 | 0.9006 | - | |
|
|
| 1.9436 | 15100 | 0.9158 | - | |
|
|
| 1.9565 | 15200 | 0.9077 | - | |
|
|
| 1.9694 | 15300 | 0.8976 | - | |
|
|
| 1.9822 | 15400 | 0.899 | - | |
|
|
| 1.9951 | 15500 | 0.9096 | - | |
|
|
| 1.9997 | 15536 | - | 0.6843 | |
|
|
| 2.0080 | 15600 | 0.8844 | - | |
|
|
| 2.0209 | 15700 | 0.8738 | - | |
|
|
| 2.0337 | 15800 | 0.8896 | - | |
|
|
| 2.0466 | 15900 | 0.8892 | - | |
|
|
| 2.0595 | 16000 | 0.8805 | - | |
|
|
| 2.0723 | 16100 | 0.8732 | - | |
|
|
| 2.0852 | 16200 | 0.8821 | - | |
|
|
| 2.0981 | 16300 | 0.8903 | - | |
|
|
| 2.1110 | 16400 | 0.8901 | - | |
|
|
| 2.1238 | 16500 | 0.8844 | - | |
|
|
| 2.1367 | 16600 | 0.8887 | - | |
|
|
| 2.1496 | 16700 | 0.871 | - | |
|
|
| 2.1624 | 16800 | 0.8776 | - | |
|
|
| 2.1753 | 16900 | 0.8754 | - | |
|
|
| 2.1882 | 17000 | 0.8949 | - | |
|
|
| 2.2011 | 17100 | 0.8835 | - | |
|
|
| 2.2139 | 17200 | 0.8694 | - | |
|
|
| 2.2268 | 17300 | 0.8773 | - | |
|
|
| 2.2397 | 17400 | 0.8808 | - | |
|
|
| 2.2525 | 17500 | 0.8908 | - | |
|
|
| 2.2654 | 17600 | 0.8854 | - | |
|
|
| 2.2783 | 17700 | 0.8813 | - | |
|
|
| 2.2912 | 17800 | 0.8813 | - | |
|
|
| 2.3040 | 17900 | 0.8805 | - | |
|
|
| 2.3169 | 18000 | 0.8666 | - | |
|
|
| 2.3298 | 18100 | 0.8851 | - | |
|
|
| 2.3426 | 18200 | 0.8719 | - | |
|
|
| 2.3555 | 18300 | 0.8819 | - | |
|
|
| 2.3684 | 18400 | 0.8695 | - | |
|
|
| 2.3813 | 18500 | 0.8778 | - | |
|
|
| 2.3941 | 18600 | 0.8673 | - | |
|
|
| 2.4070 | 18700 | 0.8868 | - | |
|
|
| 2.4199 | 18800 | 0.886 | - | |
|
|
| 2.4327 | 18900 | 0.882 | - | |
|
|
| 2.4456 | 19000 | 0.8701 | - | |
|
|
| 2.4585 | 19100 | 0.874 | - | |
|
|
| 2.4714 | 19200 | 0.8681 | - | |
|
|
| 2.4842 | 19300 | 0.886 | - | |
|
|
| 2.4971 | 19400 | 0.882 | - | |
|
|
| 2.4997 | 19420 | - | 0.6884 | |
|
|
| 2.5100 | 19500 | 0.8837 | - | |
|
|
| 2.5228 | 19600 | 0.8765 | - | |
|
|
| 2.5357 | 19700 | 0.8771 | - | |
|
|
| 2.5486 | 19800 | 0.8727 | - | |
|
|
| 2.5615 | 19900 | 0.8735 | - | |
|
|
| 2.5743 | 20000 | 0.8765 | - | |
|
|
| 2.5872 | 20100 | 0.8701 | - | |
|
|
| 2.6001 | 20200 | 0.8804 | - | |
|
|
| 2.6129 | 20300 | 0.8785 | - | |
|
|
| 2.6258 | 20400 | 0.8719 | - | |
|
|
| 2.6387 | 20500 | 0.8758 | - | |
|
|
| 2.6516 | 20600 | 0.8868 | - | |
|
|
| 2.6644 | 20700 | 0.8684 | - | |
|
|
| 2.6773 | 20800 | 0.8636 | - | |
|
|
| 2.6902 | 20900 | 0.8942 | - | |
|
|
| 2.7031 | 21000 | 0.8726 | - | |
|
|
| 2.7159 | 21100 | 0.8704 | - | |
|
|
| 2.7288 | 21200 | 0.8728 | - | |
|
|
| 2.7417 | 21300 | 0.8708 | - | |
|
|
| 2.7545 | 21400 | 0.8654 | - | |
|
|
| 2.7674 | 21500 | 0.8599 | - | |
|
|
| 2.7803 | 21600 | 0.8714 | - | |
|
|
| 2.7932 | 21700 | 0.8753 | - | |
|
|
| 2.8060 | 21800 | 0.8793 | - | |
|
|
| 2.8189 | 21900 | 0.8787 | - | |
|
|
| 2.8318 | 22000 | 0.8797 | - | |
|
|
| 2.8446 | 22100 | 0.876 | - | |
|
|
| 2.8575 | 22200 | 0.8732 | - | |
|
|
| 2.8704 | 22300 | 0.8687 | - | |
|
|
| 2.8833 | 22400 | 0.871 | - | |
|
|
| 2.8961 | 22500 | 0.8796 | - | |
|
|
| 2.9090 | 22600 | 0.8812 | - | |
|
|
| 2.9219 | 22700 | 0.8659 | - | |
|
|
| 2.9347 | 22800 | 0.8625 | - | |
|
|
| 2.9476 | 22900 | 0.8755 | - | |
|
|
| 2.9605 | 23000 | 0.8767 | - | |
|
|
| 2.9734 | 23100 | 0.8658 | - | |
|
|
| 2.9862 | 23200 | 0.8751 | - | |
|
|
| 2.9991 | 23300 | 0.8774 | - | |
|
|
| 2.9996 | 23304 | - | 0.6889 | |
|
|
|
|
|
</details> |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.11 |
|
|
- Sentence Transformers: 3.4.1 |
|
|
- Transformers: 4.53.2 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.5.2 |
|
|
- Datasets: 3.2.0 |
|
|
- Tokenizers: 0.21.0 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### CachedMultipleNegativesRankingLoss |
|
|
```bibtex |
|
|
@misc{gao2021scaling, |
|
|
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, |
|
|
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan}, |
|
|
year={2021}, |
|
|
eprint={2101.06983}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.LG} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |