|
--- |
|
language: |
|
- es |
|
license: openrail |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: nominal-groups-recognition-medical-disease-competencia2-bert-medical-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nominal-groups-recognition-medical-disease-competencia2-bert-medical-ner |
|
|
|
This model is a fine-tuned version of [ukkendane/bert-medical-ner](https://huggingface.co/ukkendane/bert-medical-ner) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3607 |
|
- Body Part Precision: 0.6555 |
|
- Body Part Recall: 0.7094 |
|
- Body Part F1: 0.6814 |
|
- Body Part Number: 413 |
|
- Disease Precision: 0.6835 |
|
- Disease Recall: 0.7067 |
|
- Disease F1: 0.6949 |
|
- Disease Number: 975 |
|
- Family Member Precision: 1.0 |
|
- Family Member Recall: 0.6 |
|
- Family Member F1: 0.7500 |
|
- Family Member Number: 30 |
|
- Medication Precision: 0.7647 |
|
- Medication Recall: 0.6989 |
|
- Medication F1: 0.7303 |
|
- Medication Number: 93 |
|
- Procedure Precision: 0.5385 |
|
- Procedure Recall: 0.5402 |
|
- Procedure F1: 0.5393 |
|
- Procedure Number: 311 |
|
- Overall Precision: 0.6594 |
|
- Overall Recall: 0.6767 |
|
- Overall F1: 0.6679 |
|
- Overall Accuracy: 0.9079 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 13 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Body Part Precision | Body Part Recall | Body Part F1 | Body Part Number | Disease Precision | Disease Recall | Disease F1 | Disease Number | Family Member Precision | Family Member Recall | Family Member F1 | Family Member Number | Medication Precision | Medication Recall | Medication F1 | Medication Number | Procedure Precision | Procedure Recall | Procedure F1 | Procedure Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.4541 | 1.0 | 8025 | 0.3607 | 0.6555 | 0.7094 | 0.6814 | 413 | 0.6835 | 0.7067 | 0.6949 | 975 | 1.0 | 0.6 | 0.7500 | 30 | 0.7647 | 0.6989 | 0.7303 | 93 | 0.5385 | 0.5402 | 0.5393 | 311 | 0.6594 | 0.6767 | 0.6679 | 0.9079 | |
|
| 0.3149 | 2.0 | 16050 | 0.3607 | 0.6555 | 0.7094 | 0.6814 | 413 | 0.6835 | 0.7067 | 0.6949 | 975 | 1.0 | 0.6 | 0.7500 | 30 | 0.7647 | 0.6989 | 0.7303 | 93 | 0.5385 | 0.5402 | 0.5393 | 311 | 0.6594 | 0.6767 | 0.6679 | 0.9079 | |
|
| 0.3161 | 3.0 | 24075 | 0.3607 | 0.6555 | 0.7094 | 0.6814 | 413 | 0.6835 | 0.7067 | 0.6949 | 975 | 1.0 | 0.6 | 0.7500 | 30 | 0.7647 | 0.6989 | 0.7303 | 93 | 0.5385 | 0.5402 | 0.5393 | 311 | 0.6594 | 0.6767 | 0.6679 | 0.9079 | |
|
| 0.3181 | 4.0 | 32100 | 0.3607 | 0.6555 | 0.7094 | 0.6814 | 413 | 0.6835 | 0.7067 | 0.6949 | 975 | 1.0 | 0.6 | 0.7500 | 30 | 0.7647 | 0.6989 | 0.7303 | 93 | 0.5385 | 0.5402 | 0.5393 | 311 | 0.6594 | 0.6767 | 0.6679 | 0.9079 | |
|
| 0.3164 | 5.0 | 40125 | 0.3607 | 0.6555 | 0.7094 | 0.6814 | 413 | 0.6835 | 0.7067 | 0.6949 | 975 | 1.0 | 0.6 | 0.7500 | 30 | 0.7647 | 0.6989 | 0.7303 | 93 | 0.5385 | 0.5402 | 0.5393 | 311 | 0.6594 | 0.6767 | 0.6679 | 0.9079 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|