|
--- |
|
base_model: klue/roberta-base |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:7654 |
|
- loss:CosineSimilarityLoss |
|
widget: |
|
- source_sentence: 밥을 먹고 나서 운동하시겠어요, 먹기 전에 하시겠어요? |
|
sentences: |
|
- 제습기 조정하는 방법을 알려줘 |
|
- 금요일에 놀러 가고 싶은지 토요일에 가고 싶은지 말해보겠니? |
|
- 이번에 임원들도 오시니 거래처 사람들과 만날 때 늦지 마세요. |
|
- source_sentence: 올해 지원 대상에 선정된 42개사는 사업화 자금부터 사업화 촉진 진단, 민간투자 유치 등 기업 규모를 키울 수 있는 |
|
각종 지원을 최대 15개월까지 받을 수 있다. |
|
sentences: |
|
- 체크인 아웃 할 때 소통이나 협조도도 매우 좋습니다 |
|
- 작년 용평 지역 강설량은? |
|
- 긴급 사태가 선언된 7개 도부현의 지사는 법적인 근거 아래 외출자제와 휴교 등을 요청할 수 있다. |
|
- source_sentence: 언제 할머니 칠순 잔치가 잡혀 있나요, 이번달입니까 다음달입니까? |
|
sentences: |
|
- 그리고 세탁세제와 식용유가 없으니 준비 하세요 |
|
- 삼월에 태어난 친구 이름이 어떻게 됩니까? |
|
- 비 올 때는 다른 신발 말고 장화를 신었으면 합니다. |
|
- source_sentence: 한메일 서비스를 사용할 수 있는 기한이 언제일까요? |
|
sentences: |
|
- 우리는 코로나19와의 투쟁에서 개발도상국들을 지원해야 할 필요성을 인정한다. |
|
- 비 올 때는 높은지대에 텐트 치도록 해. 낮은 지대는 별로야. |
|
- 한메일은 언제 서비스를 종료해? |
|
- source_sentence: 오늘 제가 해야할 일이 무엇인가요! |
|
sentences: |
|
- 시내 중심에 위치한 깔끔하고 머무르기 좋은 숙소 입니다. |
|
- 가게로 들어가는 문 바로 옆에 오른쪽으로 올라가는 입구가 있어요. |
|
- 언제쯤 친구가 여행 갈 수 있겠니? |
|
model-index: |
|
- name: SentenceTransformer based on klue/roberta-base |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.3477070578392738 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.35560473197486514 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.36738467673522557 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.36460670798564826 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.36074511612166327 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.35482778401649034 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.21251170218646828 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.20063256899469895 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.36738467673522557 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.36460670798564826 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.9611295434382598 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.922281644313147 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.95182850390749 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.9211213430736883 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9519510086799272 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.9217056450919558 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.9503136478175895 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.9045157489205089 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9611295434382598 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.922281644313147 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on klue/roberta-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'오늘 제가 해야할 일이 무엇인가요!', |
|
'언제쯤 친구가 여행 갈 수 있겠니?', |
|
'시내 중심에 위치한 깔끔하고 머무르기 좋은 숙소 입니다.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.3477 | |
|
| spearman_cosine | 0.3556 | |
|
| pearson_manhattan | 0.3674 | |
|
| spearman_manhattan | 0.3646 | |
|
| pearson_euclidean | 0.3607 | |
|
| spearman_euclidean | 0.3548 | |
|
| pearson_dot | 0.2125 | |
|
| spearman_dot | 0.2006 | |
|
| pearson_max | 0.3674 | |
|
| **spearman_max** | **0.3646** | |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.9611 | |
|
| spearman_cosine | 0.9223 | |
|
| pearson_manhattan | 0.9518 | |
|
| spearman_manhattan | 0.9211 | |
|
| pearson_euclidean | 0.952 | |
|
| spearman_euclidean | 0.9217 | |
|
| pearson_dot | 0.9503 | |
|
| spearman_dot | 0.9045 | |
|
| pearson_max | 0.9611 | |
|
| **spearman_max** | **0.9223** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 7,654 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 19.59 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.37 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:--------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:------------------| |
|
| <code>‘인공지능 반도체 산업 발전전략’의 차질 없는 이행 및 성과점검을 위해 정부와 산·학·연이 참여하는 ‘인공지능 반도체 산업 전략회의’를 구성·운영한다.</code> | <code>정부, 산업계, 학계, 연구기관이 참여하는 '인공지능 반도체산업전략회의'를 구성하여 '인공지능 반도체산업 발전전략'의 성과를 점검할 예정입니다.</code> | <code>0.6</code> | |
|
| <code>예상했던대로 가성비 대비 최고의 위치였어요.</code> | <code>처음에 예상했던것보다 위치가 훨씬 좋았어요</code> | <code>0.54</code> | |
|
| <code>올해 처음 개최되는 투자유치설명회는 전문투자기관에 홍보할 기회를 얻기 힘든 1인 미디어 스타트업들의 민간 투자유치를 지원할 목적으로 마련됐다.</code> | <code>이번 발사는 저궤도위성에 이어 정지궤도위성에서 실시간으로 환경 감시 업무를 수행하는 세계 최초의 위성으로 기록됐다.</code> | <code>0.04</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 4 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | spearman_max | |
|
|:------:|:----:|:-------------:|:------------:| |
|
| 0 | 0 | - | 0.3646 | |
|
| 1.0 | 479 | - | 0.9133 | |
|
| 1.0438 | 500 | 0.0281 | - | |
|
| 2.0 | 958 | - | 0.9181 | |
|
| 2.0877 | 1000 | 0.006 | 0.9217 | |
|
| 3.0 | 1437 | - | 0.9191 | |
|
| 3.1315 | 1500 | 0.0036 | - | |
|
| 4.0 | 1916 | - | 0.9223 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.4.1+cu121 |
|
- Accelerate: 0.34.2 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |