metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:50000
- loss:CosineSimilarityLoss
base_model: google-bert/bert-base-uncased
widget:
- source_sentence: >-
Sometimes the people who represent themselves don't even know the
significant facts of their case.
sentences:
- >-
The law is very easy to understand, so representing yourself in court is
the best way to win a case.
- >-
Sewage poured into upstairs windows from the streets while people
whispered to each other.
- His faith may be lacking.
- source_sentence: >-
When he married in 1901, he and his wife (Olga Knipper of the Moscow Art
Theater) went directly from the ceremony to a honeymoon in a sanitarium.
sentences:
- if a person wants to eat you understand that
- 'His wife has never went to a sanitarium. '
- >-
The new system appears far more complex, but ultimately easier and more
thorough.
- source_sentence: >-
it really is i heard something that their supposed to be starting a huge
campaign in New York about um child abuse and stopping child abuse and
it's supposed to be like it's starting there supposed to be like a big
nationwide campaign and you know so hopefully that will take off and
really do something i don't know there's just
sentences:
- >-
The Washington Post was the first company to report on attempts of
private companies growing embryos.
- Me too?
- It's unfortunate that nobody is organizing a child abuse campaign.
- source_sentence: >-
On the mainland, an invasion of even greater significance followed in
1580, when Philip II of Spain proclaimed himself king of Portugal and
marched his armies across the border.
sentences:
- >-
Some of the modern buildings that were erected in their place are not
admired today.
- Jon wanted to save them from the angry mob.
- Philip II of Spain invaded Portugal.
- source_sentence: The river plays a central role in all visits to Paris.
sentences:
- He said Dave Hanson.
- The river is central to all vacations to Paris.
- Trauma is the leading cause of alcohol abuse.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on google-bert/bert-base-uncased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.7301988757371918
name: Pearson Cosine
- type: spearman_cosine
value: 0.7323168725786805
name: Spearman Cosine
SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ryanhoangt/bert-base-uncased-mnli-cosine")
# Run inference
sentences = [
'The river plays a central role in all visits to Paris.',
'The river is central to all vacations to Paris.',
'Trauma is the leading cause of alcohol abuse.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7302 |
spearman_cosine | 0.7323 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 50,000 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 4 tokens
- mean: 26.95 tokens
- max: 189 tokens
- min: 5 tokens
- mean: 14.11 tokens
- max: 49 tokens
- min: 0.0
- mean: 0.34
- max: 1.0
- Samples:
sentence1 sentence2 label Conceptually cream skimming has two basic dimensions - product and geography.
Product and geography are what make cream skimming work.
0.0
you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him
You lose the things to the following level if the people recall.
1.0
One of our number will carry out your instructions minutely.
A member of my team will execute your orders with immense precision.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1warmup_steps
: 100fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 100log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | spearman_cosine |
---|---|---|---|
0.0320 | 50 | 0.2752 | - |
0.0640 | 100 | 0.1898 | - |
0.0960 | 150 | 0.1733 | - |
0.1280 | 200 | 0.1679 | - |
0.1599 | 250 | 0.1743 | - |
0.1919 | 300 | 0.1703 | - |
0.2239 | 350 | 0.1599 | - |
0.2559 | 400 | 0.1614 | - |
0.2879 | 450 | 0.149 | - |
0.3199 | 500 | 0.1555 | - |
0.3519 | 550 | 0.1631 | - |
0.3839 | 600 | 0.1537 | - |
0.4159 | 650 | 0.1497 | - |
0.4479 | 700 | 0.1512 | - |
0.4798 | 750 | 0.157 | - |
0.5118 | 800 | 0.1544 | - |
0.5438 | 850 | 0.1502 | - |
0.5758 | 900 | 0.1459 | - |
0.6078 | 950 | 0.1476 | - |
0.6398 | 1000 | 0.1439 | - |
0.6718 | 1050 | 0.1508 | - |
0.7038 | 1100 | 0.1444 | - |
0.7358 | 1150 | 0.1457 | - |
0.7678 | 1200 | 0.1486 | - |
0.7997 | 1250 | 0.1485 | - |
0.8317 | 1300 | 0.1419 | - |
0.8637 | 1350 | 0.1406 | - |
0.8957 | 1400 | 0.1407 | - |
0.9277 | 1450 | 0.1434 | - |
0.9597 | 1500 | 0.1365 | - |
0.9917 | 1550 | 0.1465 | - |
-1 | -1 | - | 0.7323 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}