metadata
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: skops-g4ku84rd.pkl
widget:
- structuredData:
x0:
- -0.7989508220667412
- -0.021264850777441783
- -0.3128970900109291
x1:
- 0.4946075830589406
- -0.5773590622674106
- 0.14694272511525913
Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
C | 1.0 |
class_weight | |
dual | False |
fit_intercept | True |
intercept_scaling | 1 |
l1_ratio | |
max_iter | 100 |
multi_class | auto |
n_jobs | |
penalty | l2 |
random_state | |
solver | lbfgs |
tol | 0.0001 |
verbose | 0 |
warm_start | False |
Model Plot
LogisticRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LogisticRegression()
Evaluation Results
Metric | Value |
---|---|
accuracy | 0.925 |
precision | 0.944444 |
recall | 0.772727 |
Confusion Matrix
Model description/Evaluation Results/Classification report
Click to expand
index | precision | recall | f1-score | support |
---|---|---|---|---|
No | 0.919355 | 0.982759 | 0.95 | 58 |
Yes | 0.944444 | 0.772727 | 0.85 | 22 |
macro avg | 0.9319 | 0.877743 | 0.9 | 80 |
weighted avg | 0.926254 | 0.925 | 0.9225 | 80 |
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
model_card_authors
Seif
model_description
This is a logistic regression classifer model traines on social network ads dataset
eval_method
The model performance is evaluated on test data using accuracy, precision and recall score.