🐾 Wildlife Detector (Detectron2)

A fine-tuned Faster R-CNN object detection model trained with Detectron2 to identify 8 species of wild animals from real-world images. This model is suitable for conservation applications, automated image tagging, and wildlife monitoring.

πŸ“¦ Model Details

  • Model Type: Faster R-CNN (ResNet-101 + FPN)
  • Framework: Detectron2 (Facebook AI)
  • Task: Object Detection (bounding box)
  • Classes: Antelope, Lion, Elephant, Zebra, Gorilla, Wolf, Leopard, Giraffe

πŸ“ˆ Evaluation

Metric Score
mAP (0.5:0.95) 70.0
AP50 97.8
AP75 84.3
AP (small) 10.2
AP (medium) 54.0
AP (large) 70.8

Per-Class Performance

Class AP (%)
Antelope 67.4
Lion 68.8
Elephant 78.3
Zebra 66.7
Gorilla 70.8
Wolf 72.1
Leopard 72.1
Giraffe 64.0

πŸ§ͺ How to Use

To run inference:

from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2 import model_zoo

cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"))
cfg.MODEL.WEIGHTS = "path/to/model_final.pth"
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8

predictor = DefaultPredictor(cfg)
outputs = predictor(your_image)
Downloads last month
10
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Evaluation results