sandbox338's picture
Update README.md
c2da076 verified
metadata
license: mit
tags:
  - object-detection
  - detectron2
  - wildlife
  - computer-vision
  - pytorch
  - bounding-box
model-index:
  - name: Wildlife Detector (Detectron2)
    results:
      - task:
          name: Object Detection
          type: object-detection
        dataset:
          name: Wildlife Custom Dataset
          type: custom
        metrics:
          - name: AP (IoU=0.50:0.95)
            type: mean_average_precision
            value: 70
          - name: AP50
            type: mean_average_precision
            value: 97.8
          - name: AP75
            type: mean_average_precision
            value: 84.3
          - name: APs (Small Objects)
            type: mean_average_precision
            value: 10.2
          - name: APm (Medium Objects)
            type: mean_average_precision
            value: 54
          - name: APl (Large Objects)
            type: mean_average_precision
            value: 70.8

🐾 Wildlife Detector (Detectron2)

A fine-tuned Faster R-CNN object detection model trained with Detectron2 to identify 8 species of wild animals from real-world images. This model is suitable for conservation applications, automated image tagging, and wildlife monitoring.

πŸ“¦ Model Details

  • Model Type: Faster R-CNN (ResNet-101 + FPN)
  • Framework: Detectron2 (Facebook AI)
  • Task: Object Detection (bounding box)
  • Classes: Antelope, Lion, Elephant, Zebra, Gorilla, Wolf, Leopard, Giraffe

πŸ“ˆ Evaluation

Metric Score
mAP (0.5:0.95) 70.0
AP50 97.8
AP75 84.3
AP (small) 10.2
AP (medium) 54.0
AP (large) 70.8

Per-Class Performance

Class AP (%)
Antelope 67.4
Lion 68.8
Elephant 78.3
Zebra 66.7
Gorilla 70.8
Wolf 72.1
Leopard 72.1
Giraffe 64.0

πŸ§ͺ How to Use

To run inference:

from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2 import model_zoo

cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"))
cfg.MODEL.WEIGHTS = "path/to/model_final.pth"
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8

predictor = DefaultPredictor(cfg)
outputs = predictor(your_image)