metadata
license: mit
tags:
- object-detection
- detectron2
- wildlife
- computer-vision
- pytorch
- bounding-box
model-index:
- name: Wildlife Detector (Detectron2)
results:
- task:
name: Object Detection
type: object-detection
dataset:
name: Wildlife Custom Dataset
type: custom
metrics:
- name: AP (IoU=0.50:0.95)
type: mean_average_precision
value: 70
- name: AP50
type: mean_average_precision
value: 97.8
- name: AP75
type: mean_average_precision
value: 84.3
- name: APs (Small Objects)
type: mean_average_precision
value: 10.2
- name: APm (Medium Objects)
type: mean_average_precision
value: 54
- name: APl (Large Objects)
type: mean_average_precision
value: 70.8
πΎ Wildlife Detector (Detectron2)
A fine-tuned Faster R-CNN object detection model trained with Detectron2 to identify 8 species of wild animals from real-world images. This model is suitable for conservation applications, automated image tagging, and wildlife monitoring.
π¦ Model Details
- Model Type: Faster R-CNN (ResNet-101 + FPN)
- Framework: Detectron2 (Facebook AI)
- Task: Object Detection (bounding box)
- Classes: Antelope, Lion, Elephant, Zebra, Gorilla, Wolf, Leopard, Giraffe
π Evaluation
Metric | Score |
---|---|
mAP (0.5:0.95) | 70.0 |
AP50 | 97.8 |
AP75 | 84.3 |
AP (small) | 10.2 |
AP (medium) | 54.0 |
AP (large) | 70.8 |
Per-Class Performance
Class | AP (%) |
---|---|
Antelope | 67.4 |
Lion | 68.8 |
Elephant | 78.3 |
Zebra | 66.7 |
Gorilla | 70.8 |
Wolf | 72.1 |
Leopard | 72.1 |
Giraffe | 64.0 |
π§ͺ How to Use
To run inference:
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2 import model_zoo
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml"))
cfg.MODEL.WEIGHTS = "path/to/model_final.pth"
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8
predictor = DefaultPredictor(cfg)
outputs = predictor(your_image)