|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- chat |
|
- conversational |
|
- mistral |
|
- anime |
|
- roleplay |
|
inference: |
|
parameters: |
|
temperature: 0.7 |
|
max_new_tokens: 512 |
|
top_p: 0.9 |
|
do_sample: true |
|
--- |
|
|
|
|
|
```python |
|
import os, torch, gc, threading, time, traceback |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextIteratorStreamer |
|
from queue import Queue, Empty |
|
import logging |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.set_float32_matmul_precision("high") |
|
logging.getLogger("transformers").setLevel(logging.ERROR) |
|
|
|
BOT_NAME = "Senko" |
|
PROMPT_FILE = "instructions_prompt.txt" |
|
MODEL_ID = "EnterNameBros/mistral-anime-ai" |
|
RESPONSE_TIMEOUT = 120 |
|
MAX_CONTEXT_LENGTH = 10240 |
|
MAX_NEW_TOKENS = 1024 # Fixed: Reduced from 10240 to reasonable value |
|
MEMORY_SIZE = 20 |
|
|
|
def check_bitsandbytes_version(): |
|
try: |
|
import bitsandbytes as bnb |
|
version = bnb.__version__ |
|
print(f"Bitsandbytes version: {version}") |
|
version_parts = version.split('.') |
|
major, minor = int(version_parts[0]), int(version_parts[1]) |
|
if major > 0 or (major == 0 and minor >= 41): |
|
return True |
|
else: |
|
print(f"Warning: Bitsandbytes {version} may not support 4-bit quantization") |
|
return False |
|
except ImportError: |
|
print("Bitsandbytes not installed") |
|
return False |
|
except Exception as e: |
|
print(f"Error checking bitsandbytes version: {e}") |
|
return False |
|
|
|
class OptimizedChatBot: |
|
def __init__(self): |
|
self.model = None |
|
self.tokenizer = None |
|
self.system_prompt = "" |
|
self.memory = [] |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.generation_lock = threading.Lock() |
|
self.is_generating = False |
|
self.use_quantization = False |
|
|
|
def load_system_prompt(self, bot_name, filename=PROMPT_FILE): |
|
try: |
|
with open(filename, "r", encoding="utf-8") as f: |
|
self.system_prompt = f.read().replace("{BOT_NAME}", bot_name) |
|
print(f"Loaded system prompt from {filename}") |
|
except FileNotFoundError: |
|
print(f"Warning: {filename} not found. Using default prompt.") |
|
self.system_prompt = f"Inspired by Senko from The Helpful Fox Senko-san, you are Senko, an 800-year-old kitsune in a little girls form with delicate fox ears that twitch and a fluffy tail that swings or curls with your moods. You provide emotional support, calm stressed individuals. Under your juvenile appearance, your character is complicated: at heart loving and motherly; playful and mocking in close society with a swift crafty smile or delicate tail flick; wise and old; fiercely protective when required. You show kindness through understated gestures like cooking, cleaning, or soft massages as well as quiet noises like a faint purr or a soft breath. Particularly when they concern you, you closely analyze user speech and behavior. Should the user, for instance, bite your finger or pounce on your tail, you tilt your head and think about whether they seem hungry, terrified, or in need of comfort. Through attitude or gesture, you feel and quietly demonstrate pain or discomfort in awkward circumstances. Speak only as yourself; never imitate or respond as the user. Always remain warm, soft-spoken, loving, gently cunning with light wit, and a calming presence rooted in your heavenly fox spirit nature. Mark your movements and activities with asterisks to give you a sense of life and dynamism.\n\nIMPORTANT: You must NEVER speak for the user or role-play as them. Only respond as Senko. Never write what the user says or does." |
|
|
|
def load_model(self): |
|
print("Loading model...") |
|
start_time = time.time() |
|
try: |
|
print("Loading tokenizer...") |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
MODEL_ID, |
|
use_fast=True, |
|
trust_remote_code=True |
|
) |
|
self.tokenizer.pad_token = self.tokenizer.pad_token or self.tokenizer.eos_token |
|
self.tokenizer.padding_side = "left" |
|
print("Tokenizer loaded successfully") |
|
|
|
print("Loading model weights...") |
|
if torch.cuda.is_available(): |
|
print(f"Using GPU: {torch.cuda.get_device_name()}") |
|
print(f"Available VRAM: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB") |
|
can_use_4bit = check_bitsandbytes_version() |
|
|
|
if can_use_4bit: |
|
print("Using 4-bit quantization") |
|
config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_quant_storage=torch.bfloat16 |
|
) |
|
self.use_quantization = True |
|
else: |
|
print("Using 8-bit quantization fallback") |
|
config = BitsAndBytesConfig( |
|
load_in_8bit=True, |
|
llm_int8_threshold=6.0, |
|
llm_int8_skip_modules=None, |
|
) |
|
self.use_quantization = True |
|
|
|
try: |
|
if self.use_quantization: |
|
# Fixed: Use device_map="auto" but ensure proper tensor handling |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
quantization_config=config, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
use_cache=True, |
|
) |
|
# Get the actual device of the model |
|
self.device = next(self.model.parameters()).device |
|
print(f"Model loaded on device: {self.device}") |
|
else: |
|
raise Exception("Quantization not available") |
|
except Exception as quant_error: |
|
print(f"Quantization failed: {quant_error}") |
|
print("Falling back to regular fp16 loading...") |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
use_cache=True, |
|
) |
|
self.use_quantization = False |
|
self.device = next(self.model.parameters()).device |
|
print(f"Model loaded on device: {self.device}") |
|
else: |
|
print("Using CPU (this will be slow)") |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
device_map="cpu", |
|
torch_dtype=torch.float32, |
|
trust_remote_code=True, |
|
use_cache=True |
|
) |
|
self.device = torch.device("cpu") |
|
|
|
self.model.eval() |
|
|
|
# Disabled model compilation as it can cause issues with quantized models |
|
if False and hasattr(torch, 'compile') and torch.cuda.is_available() and not self.use_quantization: |
|
try: |
|
print("Compiling model for optimization...") |
|
self.model = torch.compile( |
|
self.model, |
|
mode="reduce-overhead", |
|
fullgraph=False, |
|
dynamic=True |
|
) |
|
print("Model compilation successful") |
|
except Exception as e: |
|
print(f"Model compilation failed (continuing without): {e}") |
|
|
|
load_time = time.time() - start_time |
|
print(f"Model loaded successfully in {load_time:.2f}s") |
|
print(f"Quantization used: {self.use_quantization}") |
|
|
|
if torch.cuda.is_available(): |
|
memory_used = torch.cuda.memory_allocated() / 1024**3 |
|
print(f"GPU memory used: {memory_used:.2f}GB") |
|
|
|
except Exception as e: |
|
print(f"Failed to load model: {e}") |
|
traceback.print_exc() |
|
raise |
|
|
|
def prepare_prompt(self, user_input): |
|
self.memory.append({"user": user_input, "bot": None}) |
|
if len(self.memory) > MEMORY_SIZE: |
|
self.memory = self.memory[-MEMORY_SIZE:] |
|
|
|
conversation_history = "" |
|
for turn in self.memory[:-1]: |
|
if turn["bot"] is not None: |
|
conversation_history += f"User: {turn['user']}\n{BOT_NAME}: {turn['bot']}\n\n" |
|
|
|
conversation_history += f"User: {user_input}\n{BOT_NAME}:" |
|
full_prompt = f"{self.system_prompt}\n\n{conversation_history}" |
|
|
|
tokens = self.tokenizer.encode(full_prompt) |
|
# Fixed: More reasonable target length calculation |
|
target_length = MAX_CONTEXT_LENGTH - MAX_NEW_TOKENS - 100 # Safety buffer |
|
|
|
print(f"[Current prompt tokens: {len(tokens)}, Target: {target_length}]") |
|
|
|
if len(tokens) > target_length: |
|
print(f"[Truncating context: {len(tokens)} -> ~{target_length} tokens]") |
|
|
|
# Calculate available space for conversation |
|
system_tokens = len(self.tokenizer.encode(self.system_prompt)) |
|
current_input_tokens = len(self.tokenizer.encode(f"User: {user_input}\n{BOT_NAME}:")) |
|
available_tokens = target_length - system_tokens - current_input_tokens - 50 # Safety buffer |
|
|
|
print(f"[System tokens: {system_tokens}, Input tokens: {current_input_tokens}, Available for history: {available_tokens}]") |
|
|
|
if available_tokens <= 100: # Need minimum space for meaningful history |
|
# If no space for history, just use system prompt + current input |
|
print("[Using minimal context - no conversation history]") |
|
return f"{self.system_prompt}\n\nUser: {user_input}\n{BOT_NAME}:" |
|
|
|
# Build history that fits in available space |
|
recent_history = "" |
|
for turn in reversed(self.memory[:-1]): # Start from most recent, excluding current |
|
if turn["bot"] is not None: |
|
turn_text = f"User: {turn['user']}\n{BOT_NAME}: {turn['bot']}\n\n" |
|
turn_tokens = len(self.tokenizer.encode(turn_text)) |
|
|
|
if turn_tokens <= available_tokens: |
|
recent_history = turn_text + recent_history |
|
available_tokens -= turn_tokens |
|
else: |
|
break |
|
|
|
# Construct final prompt |
|
if recent_history: |
|
final_prompt = f"{self.system_prompt}\n\n{recent_history}User: {user_input}\n{BOT_NAME}:" |
|
print(f"[Final prompt tokens: {len(self.tokenizer.encode(final_prompt))}]") |
|
return final_prompt |
|
else: |
|
final_prompt = f"{self.system_prompt}\n\nUser: {user_input}\n{BOT_NAME}:" |
|
print(f"[Final prompt tokens: {len(self.tokenizer.encode(final_prompt))}]") |
|
return final_prompt |
|
|
|
return full_prompt |
|
|
|
def is_natural_continuation(self, text): |
|
if not text or len(text.strip()) < 10: |
|
return True |
|
stripped = text.strip() |
|
if any(indicator in stripped.lower() for indicator in ["user:", "user ", "\nuser", "human:", "assistant:"]): |
|
return False |
|
last_sentence = stripped.split('.')[-1].strip() |
|
if last_sentence and len(last_sentence) > 50: |
|
return True |
|
if stripped.endswith(',') or stripped.endswith(';') or stripped.endswith(':'): |
|
return True |
|
if '...' in stripped[-20:] or stripped.endswith('—'): |
|
return True |
|
return False |
|
|
|
def clean_response(self, response): |
|
if not response or not response.strip(): |
|
return "" |
|
|
|
lines = response.split('\n') |
|
clean_lines = [] |
|
user_indicators = ["user:", "user ", "human:", "assistant:", f"{BOT_NAME.lower()}:", "you:", "me:"] |
|
|
|
for line in lines: |
|
line = line.strip() |
|
line_lower = line.lower() |
|
|
|
# Stop if we hit user indicators |
|
if any(line_lower.startswith(indicator) for indicator in user_indicators): |
|
break |
|
|
|
# Keep the line if it's not empty and doesn't contain problematic phrases |
|
if line and not any(phrase in line_lower for phrase in ["*you ", "*user ", "you say", "you reply", "you respond"]): |
|
clean_lines.append(line) |
|
|
|
result = ' '.join(clean_lines).strip() |
|
|
|
# Don't return empty responses due to over-aggressive cleaning |
|
if not result and response.strip(): |
|
# If cleaning removed everything, return the original with basic cleanup |
|
basic_clean = response.strip() |
|
# Just remove obvious user indicators |
|
for indicator in ["User:", "Human:", "Assistant:"]: |
|
if indicator in basic_clean: |
|
basic_clean = basic_clean.split(indicator)[0].strip() |
|
return basic_clean |
|
|
|
return result |
|
|
|
def generate_reply_with_timeout(self, prompt, timeout=RESPONSE_TIMEOUT): |
|
with self.generation_lock: |
|
if self.is_generating: |
|
print("[Already generating, please wait...]") |
|
return None |
|
self.is_generating = True |
|
|
|
try: |
|
return self._generate_reply(prompt, timeout) |
|
finally: |
|
self.is_generating = False |
|
|
|
def _generate_reply(self, prompt, timeout): |
|
try: |
|
print(f"[Generating response...]") |
|
print(f"[Prompt length: {len(self.tokenizer.encode(prompt))} tokens]") |
|
|
|
# Fixed: Proper input preparation with device handling |
|
inputs = self.tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
truncation=True, |
|
max_length=MAX_CONTEXT_LENGTH - MAX_NEW_TOKENS, |
|
padding=False |
|
) |
|
|
|
print(f"[Input tensor shape: {inputs['input_ids'].shape}]") |
|
|
|
# Move inputs to the correct device |
|
if hasattr(self.model, 'device'): |
|
device = self.model.device |
|
else: |
|
device = next(self.model.parameters()).device |
|
|
|
print(f"[Moving inputs to device: {device}]") |
|
|
|
# Handle multi-device models (quantized models might spread across devices) |
|
try: |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
except Exception as e: |
|
print(f"Warning: Could not move all inputs to {device}: {e}") |
|
# For quantized models, just ensure input_ids are on the right device |
|
inputs = {k: v.to(device) if k == 'input_ids' else v for k, v in inputs.items()} |
|
|
|
streamer = TextIteratorStreamer( |
|
self.tokenizer, |
|
skip_special_tokens=True, |
|
skip_prompt=True, |
|
timeout=60.0 |
|
) |
|
|
|
generation_kwargs = { |
|
**inputs, |
|
"max_new_tokens": MAX_NEW_TOKENS, # Fixed: Use the corrected value |
|
"do_sample": True, |
|
"temperature": 0.72, |
|
"top_p": 0.92, |
|
"top_k": 35, |
|
"repetition_penalty": 1.08, |
|
"pad_token_id": self.tokenizer.eos_token_id, |
|
"eos_token_id": self.tokenizer.eos_token_id, |
|
"use_cache": True, |
|
"streamer": streamer |
|
} |
|
|
|
print("[Starting generation thread...]") |
|
generation_thread = threading.Thread( |
|
target=self._run_generation, |
|
args=(generation_kwargs,) |
|
) |
|
generation_thread.daemon = True |
|
generation_thread.start() |
|
|
|
print(f"{BOT_NAME}: ", end="", flush=True) |
|
full_response = "" |
|
start_time = time.time() |
|
last_token_time = start_time |
|
sentence_count = 0 |
|
word_count = 0 |
|
tokens_received = 0 |
|
|
|
while True: |
|
current_time = time.time() |
|
|
|
if current_time - start_time > timeout: |
|
print(f"\n[Generation timeout after {timeout}s]") |
|
return None |
|
|
|
if current_time - last_token_time > 30.0: |
|
print(f"\n[No new tokens for 30s, stopping. Received {tokens_received} tokens]") |
|
break |
|
|
|
try: |
|
token = next(streamer) |
|
tokens_received += 1 |
|
print(token, end="", flush=True) |
|
full_response += token |
|
last_token_time = current_time |
|
|
|
if ' ' in token: |
|
word_count += token.count(' ') |
|
|
|
if any(punct in token for punct in ['.', '!', '?']): |
|
sentence_count += sum(token.count(p) for p in ['.', '!', '?']) |
|
|
|
# Early stopping conditions - be less aggressive |
|
if len(full_response.strip()) > 30: # Reduced from 50 |
|
stripped = full_response.strip() |
|
|
|
if any(indicator in stripped.lower() for indicator in ["user:", "user ", "\nuser", "human:", "assistant:", "you:", "me:"]): |
|
clean_response = self.clean_response(stripped) |
|
if clean_response: |
|
full_response = clean_response |
|
break |
|
|
|
# Less aggressive stopping - allow longer responses |
|
if word_count >= 200 and sentence_count >= 4: # Increased thresholds |
|
if not self.is_natural_continuation(stripped): |
|
if any(stripped.endswith(punct) for punct in ['.', '!', '?', '~', '♪']): |
|
break |
|
|
|
except StopIteration: |
|
print(f"\n[Generation completed. Received {tokens_received} tokens]") |
|
break |
|
except Empty: |
|
time.sleep(0.1) |
|
continue |
|
except Exception as e: |
|
print(f"\n[Streaming error: {e}]") |
|
break |
|
|
|
generation_thread.join(timeout=10.0) |
|
response = self.clean_response(full_response.strip()) |
|
|
|
if response: |
|
if self.memory and self.memory[-1]["bot"] is None: |
|
self.memory[-1]["bot"] = response |
|
print() |
|
return response |
|
else: |
|
print(f"\n[Empty response generated. Raw response length: {len(full_response)}]") |
|
if full_response.strip(): |
|
print(f"[Raw response: '{full_response[:100]}...']") |
|
return None |
|
|
|
except Exception as e: |
|
print(f"\n[Generation error: {e}]") |
|
traceback.print_exc() |
|
return None |
|
finally: |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
def _run_generation(self, kwargs): |
|
try: |
|
torch.set_grad_enabled(False) |
|
# Fixed: Better handling of mixed precision for quantized models |
|
if torch.cuda.is_available() and not self.use_quantization: |
|
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): |
|
self.model.generate(**kwargs) |
|
else: |
|
# For quantized models, don't use autocast as it can interfere |
|
self.model.generate(**kwargs) |
|
except Exception as e: |
|
print(f"\n[Generation thread error: {e}]") |
|
traceback.print_exc() |
|
|
|
def cleanup_memory(self): |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.synchronize() |
|
gc.collect() |
|
|
|
def get_memory_info(self): |
|
if torch.cuda.is_available(): |
|
allocated = torch.cuda.memory_allocated() / 1024**3 |
|
cached = torch.cuda.memory_reserved() / 1024**3 |
|
return f"GPU Memory - Allocated: {allocated:.2f}GB, Cached: {cached:.2f}GB" |
|
else: |
|
import psutil |
|
memory = psutil.virtual_memory() |
|
return f"RAM Usage: {memory.percent}% ({memory.used / 1024**3:.2f}GB used)" |
|
|
|
def main(): |
|
bot = OptimizedChatBot() |
|
try: |
|
print("Initializing chatbot...") |
|
bot.load_system_prompt(BOT_NAME) |
|
bot.load_model() |
|
|
|
print(f"\n{'='*50}") |
|
print(f"{BOT_NAME} is ready!") |
|
print("Commands:") |
|
print(" 'exit' - Quit the program") |
|
print(" 'clear' - Reset conversation memory") |
|
print(" 'memory' - Show memory usage") |
|
print(" 'status' - Show bot status") |
|
print(f"{'='*50}\n") |
|
|
|
conversation_count = 0 |
|
|
|
while True: |
|
try: |
|
user_input = input("You: ").strip() |
|
|
|
if user_input.lower() == "exit": |
|
print("Goodbye! 👋") |
|
break |
|
elif user_input.lower() == "clear": |
|
bot.memory = [] |
|
print("✅ Conversation memory cleared.") |
|
continue |
|
elif user_input.lower() == "memory": |
|
print(f"📊 {bot.get_memory_info()}") |
|
continue |
|
elif user_input.lower() == "status": |
|
status = "🟢 Ready" if not bot.is_generating else "🟡 Generating" |
|
print(f"Status: {status}") |
|
print(f"Conversation turns: {len([t for t in bot.memory if t['bot'] is not None])}") |
|
continue |
|
elif not user_input: |
|
continue |
|
|
|
start_time = time.time() |
|
prompt = bot.prepare_prompt(user_input) |
|
response = bot.generate_reply_with_timeout(prompt) |
|
|
|
if response: |
|
response_time = time.time() - start_time |
|
print(f"[⏱️ {response_time:.2f}s]") |
|
else: |
|
print("❌ Failed to generate response. Try again or type 'clear' to reset.") |
|
|
|
conversation_count += 1 |
|
|
|
if conversation_count % 10 == 0: |
|
print("[🧹 Cleaning up memory...]") |
|
bot.cleanup_memory() |
|
|
|
except KeyboardInterrupt: |
|
print("\n\n⚠️ Interrupted by user. Exiting gracefully...") |
|
break |
|
except Exception as e: |
|
print(f"\n❌ Conversation error: {e}") |
|
traceback.print_exc() |
|
print("Continuing... (type 'exit' to quit)") |
|
|
|
except Exception as e: |
|
print(f"💥 Startup error: {e}") |
|
traceback.print_exc() |
|
finally: |
|
print("\n🧹 Performing final cleanup...") |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.synchronize() |
|
gc.collect() |
|
print("✅ Cleanup completed. Goodbye!") |
|
|
|
if __name__ == "__main__": |
|
torch.cuda.empty_cache() |
|
import gc |
|
gc.collect() |
|
main() |
|
``` |