seroe's picture
Add new CrossEncoder model
132adf2 verified
---
language:
- tr
license: apache-2.0
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:89964
- loss:CachedMultipleNegativesRankingLoss
base_model: cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
datasets:
- seroe/vodex-turkish-reranker-triplets
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: val hard
type: val-hard
metrics:
- type: map
value: 0.6093
name: Map
- type: mrr@10
value: 0.6085
name: Mrr@10
- type: ndcg@10
value: 0.6994
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: test hard
type: test-hard
metrics:
- type: map
value: 0.6085
name: Map
- type: mrr@10
value: 0.6077
name: Mrr@10
- type: ndcg@10
value: 0.6987
name: Ndcg@10
---
# cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1) on the [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [cross-encoder/mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1) <!-- at revision 1427fd652930e4ba29e8149678df786c240d8825 -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
- [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets)
- **Language:** tr
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("seroe/mmarco-mMiniLMv2-L12-H384-v1-turkish-reranker-triplet")
# Get scores for pairs of texts
pairs = [
['Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?', 'Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.'],
['Kampanya süresince internet hızı nasıl değişebilir?', 'Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.'],
["Vodafone'un tarifelerinde KDV ve ÖİV dahil midir?", "Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir."],
['Taahhüt süresi dolmadan internet hizmeti iptal edilirse ne olur?', 'Eğer taahhüt süresi bitmeden internet hizmeti iptal edilirse, aboneye sunulan D-Smart hizmeti de iptal edilecektir.'],
['Aylık 15 GB ek paketini nereden satın alabilirim?', 'Bu ek paketi almak için hangi kanalları kullanabilirim?'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?',
[
'Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.',
'Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.',
"Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir.",
'Eğer taahhüt süresi bitmeden internet hizmeti iptal edilirse, aboneye sunulan D-Smart hizmeti de iptal edilecektir.',
'Bu ek paketi almak için hangi kanalları kullanabilirim?',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `val-hard` and `test-hard`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | val-hard | test-hard |
|:------------|:---------------------|:---------------------|
| map | 0.6093 (-0.0246) | 0.6085 (-0.0178) |
| mrr@10 | 0.6085 (-0.0254) | 0.6077 (-0.0186) |
| **ndcg@10** | **0.6994 (+0.0641)** | **0.6987 (+0.0705)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### vodex-turkish-reranker-triplets
* Dataset: [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets) at [ca7d206](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets/tree/ca7d2063ad4fec15fbf739835ab6926e051950c0)
* Size: 89,964 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 20 characters</li><li>mean: 57.83 characters</li><li>max: 112 characters</li></ul> | <ul><li>min: 35 characters</li><li>mean: 92.19 characters</li><li>max: 221 characters</li></ul> | <ul><li>min: 31 characters</li><li>mean: 78.41 characters</li><li>max: 143 characters</li></ul> |
* Samples:
| query | positive | negative |
|:-------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| <code>Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?</code> | <code>Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.</code> | <code>Faturasız tarifelerde yurtdışı mesaj ücretleri 10 kuruş olarak uygulanmaktadır.</code> |
| <code>Kampanya süresince internet hızı nasıl değişebilir?</code> | <code>Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.</code> | <code>Kampanya süresince internet hızı sabit kalır ve değişiklik yapılamaz.</code> |
| <code>Vodafone'un tarifelerinde KDV ve ÖİV dahil midir?</code> | <code>Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir.</code> | <code>Vodafone tarifelerinde KDV ve ÖİV, abonelerin talep etmesi durumunda eklenmektedir.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 10.0,
"num_negatives": 4,
"activation_fn": "torch.nn.modules.activation.Sigmoid",
"mini_batch_size": 32
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 1024
- `per_device_eval_batch_size`: 1024
- `learning_rate`: 5e-07
- `weight_decay`: 0.1
- `max_grad_norm`: 0.8
- `warmup_ratio`: 0.25
- `bf16`: True
- `dataloader_num_workers`: 8
- `load_best_model_at_end`: True
- `group_by_length`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 1024
- `per_device_eval_batch_size`: 1024
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-07
- `weight_decay`: 0.1
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 0.8
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.25
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 8
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: True
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | val-hard_ndcg@10 | test-hard_ndcg@10 |
|:-----:|:----:|:-------------:|:----------------:|:-----------------:|
| 1.125 | 100 | 1.3041 | 0.7093 (+0.0740) | 0.7065 (+0.0783) |
| 2.25 | 200 | 0.9232 | 0.6994 (+0.0641) | 0.6987 (+0.0705) |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->