|
--- |
|
language: |
|
- tr |
|
license: apache-2.0 |
|
tags: |
|
- sentence-transformers |
|
- cross-encoder |
|
- generated_from_trainer |
|
- dataset_size:89964 |
|
- loss:CachedMultipleNegativesRankingLoss |
|
base_model: |
|
- cross-encoder/ms-marco-MiniLM-L12-v2 |
|
datasets: |
|
- seroe/vodex-turkish-reranker-triplets |
|
pipeline_tag: text-ranking |
|
library_name: sentence-transformers |
|
metrics: |
|
- map |
|
- mrr@10 |
|
- ndcg@10 |
|
model-index: |
|
- name: cross-encoder/ms-marco-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: cross-encoder-reranking |
|
name: Cross Encoder Reranking |
|
dataset: |
|
name: val hard |
|
type: val-hard |
|
metrics: |
|
- type: map |
|
value: 0.6082 |
|
name: Map |
|
- type: mrr@10 |
|
value: 0.6074 |
|
name: Mrr@10 |
|
- type: ndcg@10 |
|
value: 0.6986 |
|
name: Ndcg@10 |
|
- task: |
|
type: cross-encoder-reranking |
|
name: Cross Encoder Reranking |
|
dataset: |
|
name: test hard |
|
type: test-hard |
|
metrics: |
|
- type: map |
|
value: 0.6059 |
|
name: Map |
|
- type: mrr@10 |
|
value: 0.6051 |
|
name: Mrr@10 |
|
- type: ndcg@10 |
|
value: 0.6967 |
|
name: Ndcg@10 |
|
--- |
|
|
|
# cross-encoder/ms-marco-MiniLM-L12-v2 |
|
|
|
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/ms-marco-MiniLM-L12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L12-v2) on the [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Cross Encoder |
|
- **Base model:** [cross-encoder/ms-marco-MiniLM-L12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L12-v2) <!-- at revision 1427fd652930e4ba29e8149678df786c240d8825 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Output Labels:** 1 label |
|
- **Training Dataset:** |
|
- [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets) |
|
- **Language:** tr |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import CrossEncoder |
|
|
|
# Download from the 🤗 Hub |
|
model = CrossEncoder("seroe/ms-marco-MiniLM-L12-v2-turkish-reranker-triplet") |
|
# Get scores for pairs of texts |
|
pairs = [ |
|
['Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?', 'Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.'], |
|
['Kampanya süresince internet hızı nasıl değişebilir?', 'Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.'], |
|
["Vodafone'un tarifelerinde KDV ve ÖİV dahil midir?", "Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir."], |
|
['Taahhüt süresi dolmadan internet hizmeti iptal edilirse ne olur?', 'Eğer taahhüt süresi bitmeden internet hizmeti iptal edilirse, aboneye sunulan D-Smart hizmeti de iptal edilecektir.'], |
|
['Aylık 15 GB ek paketini nereden satın alabilirim?', 'Bu ek paketi almak için hangi kanalları kullanabilirim?'], |
|
] |
|
scores = model.predict(pairs) |
|
print(scores.shape) |
|
# (5,) |
|
|
|
# Or rank different texts based on similarity to a single text |
|
ranks = model.rank( |
|
'Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?', |
|
[ |
|
'Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.', |
|
'Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.', |
|
"Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir.", |
|
'Eğer taahhüt süresi bitmeden internet hizmeti iptal edilirse, aboneye sunulan D-Smart hizmeti de iptal edilecektir.', |
|
'Bu ek paketi almak için hangi kanalları kullanabilirim?', |
|
] |
|
) |
|
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Cross Encoder Reranking |
|
|
|
* Datasets: `val-hard` and `test-hard` |
|
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: |
|
```json |
|
{ |
|
"at_k": 10, |
|
"always_rerank_positives": true |
|
} |
|
``` |
|
|
|
| Metric | val-hard | test-hard | |
|
|:------------|:---------------------|:---------------------| |
|
| map | 0.6082 (-0.0256) | 0.6059 (-0.0204) | |
|
| mrr@10 | 0.6074 (-0.0264) | 0.6051 (-0.0212) | |
|
| **ndcg@10** | **0.6986 (+0.0633)** | **0.6967 (+0.0686)** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### vodex-turkish-reranker-triplets |
|
|
|
* Dataset: [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets) at [ca7d206](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets/tree/ca7d2063ad4fec15fbf739835ab6926e051950c0) |
|
* Size: 89,964 training samples |
|
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | positive | negative | |
|
|:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 20 characters</li><li>mean: 57.83 characters</li><li>max: 112 characters</li></ul> | <ul><li>min: 35 characters</li><li>mean: 92.19 characters</li><li>max: 221 characters</li></ul> | <ul><li>min: 31 characters</li><li>mean: 78.41 characters</li><li>max: 143 characters</li></ul> | |
|
* Samples: |
|
| query | positive | negative | |
|
|:-------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------| |
|
| <code>Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?</code> | <code>Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.</code> | <code>Faturasız tarifelerde yurtdışı mesaj ücretleri 10 kuruş olarak uygulanmaktadır.</code> | |
|
| <code>Kampanya süresince internet hızı nasıl değişebilir?</code> | <code>Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.</code> | <code>Kampanya süresince internet hızı sabit kalır ve değişiklik yapılamaz.</code> | |
|
| <code>Vodafone'un tarifelerinde KDV ve ÖİV dahil midir?</code> | <code>Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir.</code> | <code>Vodafone tarifelerinde KDV ve ÖİV, abonelerin talep etmesi durumunda eklenmektedir.</code> | |
|
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 10.0, |
|
"num_negatives": 4, |
|
"activation_fn": "torch.nn.modules.activation.Sigmoid", |
|
"mini_batch_size": 32 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 1024 |
|
- `per_device_eval_batch_size`: 1024 |
|
- `learning_rate`: 5e-07 |
|
- `weight_decay`: 0.1 |
|
- `max_grad_norm`: 0.8 |
|
- `warmup_ratio`: 0.25 |
|
- `bf16`: True |
|
- `dataloader_num_workers`: 8 |
|
- `load_best_model_at_end`: True |
|
- `group_by_length`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 1024 |
|
- `per_device_eval_batch_size`: 1024 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-07 |
|
- `weight_decay`: 0.1 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 0.8 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.25 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 8 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: True |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | val-hard_ndcg@10 | test-hard_ndcg@10 | |
|
|:------:|:----:|:-------------:|:----------------:|:-----------------:| |
|
| 0.5682 | 50 | - | 0.7103 (+0.0750) | 0.7063 (+0.0782) | |
|
| 1.125 | 100 | 1.3021 | 0.7094 (+0.0741) | 0.7065 (+0.0783) | |
|
| 1.6932 | 150 | - | 0.7041 (+0.0688) | 0.7047 (+0.0765) | |
|
| 2.25 | 200 | 0.9216 | 0.6997 (+0.0643) | 0.6996 (+0.0715) | |
|
| 2.8182 | 250 | - | 0.6986 (+0.0633) | 0.6967 (+0.0686) | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 4.2.0.dev0 |
|
- Transformers: 4.46.3 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.6.0 |
|
- Datasets: 3.6.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |