cwenger's picture
Upload README.md with huggingface_hub
bbd5f04 verified
metadata
base_model: jbochi/madlad400-3b-mt
library_name: peft
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: madlad400-finetuned-mbk-tpi
    results: []
language:
  - mbk
  - tpi
model_type: Translation
pipeline_tag: translation

madlad400-finetuned-mbk-tpi

This model is a fine-tuned version of jbochi/madlad400-3b-mt for translation from Malol to Tok Pisin.

Model details

  • Developed by: SIL Global
  • Finetuned from model: jbochi/madlad400-3b-mt
  • Model type: Translation
  • Source language: Malol (mbk)
  • Target language: Tok Pisin (tpi)
  • License: closed/private

Datasets

The model was trained on a parallel corpus of plain text files:

Malol:

  • Malol Scriptures
  • License: All rights reserved, Wycliffe Bible Translators. Used with permission.

Tok Pisin:

  • Tok Pisin back-translation
  • License: All rights reserved, Wycliffe Bible Translators. Used with permission.

Usage

You can use this model with the transformers library like this:

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("sil-ai/madlad400-finetuned-mbk-tpi")
model = AutoModelForSeq2SeqLM.from_pretrained("sil-ai/madlad400-finetuned-mbk-tpi")

inputs = tokenizer("Your input text here", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))

madlad400-finetuned-mbk-tpi

This model is a fine-tuned version of jbochi/madlad400-3b-mt on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1783
  • Chrf: 79.0009

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Chrf
0.2957 7.7108 1600 0.2136 76.6433

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu124
  • Datasets 2.21.0
  • Tokenizers 0.19.1