metadata
base_model: microsoft/phi-4
library_name: peft
model_name: peleke-phi-4
tags:
- base_model:adapter:microsoft/phi-4
- lora
- sft
- transformers
- trl
- chemistry
- biology
- antibody
- antigen
- protein
- amino-acid
- drug-design
licence: gpl-3
pipeline_tag: text-generation
license: gpl-3.0
datasets:
- silicobio/peleke_antibody-antigen_sabdab
Model Card for peleke-phi-4
This model is a fine-tuned version of microsoft/phi-4 for antibody sequence generation. It takes in an antigen sequence, and returns novel Fv portions of heavy and light chain antibody sequences.
Quick start
- Load in the Model
model_name = 'silicobio/peleke-phi-4'
config = PeftConfig.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
model.resize_token_embeddings(len(tokenizer))
model = PeftModel.from_pretrained(model, model_name).cuda()
- Format your Input
This model uses <epi>
and </epi>
to annotate epitope residues of interest.
It may be easier to use other characters for annotation, such as [ ]
's. For example: ...CSFS[S][F][V]L[N]WY...
.
Then, use the following function to properly format the input.
def format_prompt(antigen_sequence):
epitope_seq = re.sub(r'\[([A-Z])\]', r'<epi>\1</epi>', antigen_sequence)
formatted_str = f"Antigen: {epitope_seq}<|im_end|>\nAntibody:"
return formatted_str
- Generate an Antibody Sequence
prompt = format_prompt(antigen)
inputs = tokenizer(prompt, return_tensors="pt")
inputs = {k: v.cuda() for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=1000,
do_sample=True,
temperature=0.7,
pad_token_id=tokenizer.eos_token_id,
use_cache=False,
)
full_text = tokenizer.decode(outputs[0], skip_special_tokens=False)
antibody_sequence = full_text.split('<|im_end|>')[1].replace('Antibody: ', '')
print(f"Antigen: {antigen}\nAntibody: {antibody_sequence}\n")
This will generate a |
-delimited output, which is an Fv portion of a heavy and light chain.
Antigen: NPPTFSPALL...
Antibody: QVQLVQSGGG...|DIQMTQSPSS...
Training procedure
This model was trained with SFT.
Framework versions
- PEFT 0.17.0
- TRL: 0.19.1
- Transformers: 4.54.0
- Pytorch: 2.7.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2