|
|
--- |
|
|
base_model: microsoft/phi-4 |
|
|
library_name: peft |
|
|
model_name: peleke-phi-4 |
|
|
tags: |
|
|
- base_model:adapter:microsoft/phi-4 |
|
|
- lora |
|
|
- sft |
|
|
- transformers |
|
|
- trl |
|
|
- chemistry |
|
|
- biology |
|
|
- antibody |
|
|
- antigen |
|
|
- protein |
|
|
- amino-acid |
|
|
- drug-design |
|
|
licence: gpl-3 |
|
|
pipeline_tag: text-generation |
|
|
license: gpl-3.0 |
|
|
datasets: |
|
|
- silicobio/peleke_antibody-antigen_sabdab |
|
|
--- |
|
|
|
|
|
# Model Card for peleke-phi-4 |
|
|
|
|
|
This model is a fine-tuned version of [microsoft/phi-4](https://huggingface.co/microsoft/phi-4) for antibody sequence generation. |
|
|
It takes in an antigen sequence, and returns novel Fv portions of heavy and light chain antibody sequences. |
|
|
|
|
|
## Quick start |
|
|
|
|
|
1. Load in the Model |
|
|
|
|
|
```python |
|
|
model_name = 'silicobio/peleke-phi-4' |
|
|
config = PeftConfig.from_pretrained(model_name) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, torch_dtype=torch.bfloat16, trust_remote_code=True).cuda() |
|
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
model = PeftModel.from_pretrained(model, model_name).cuda() |
|
|
``` |
|
|
|
|
|
2. Format your Input |
|
|
|
|
|
This model uses `<epi>` and `</epi>` to annotate epitope residues of interest. |
|
|
|
|
|
It may be easier to use other characters for annotation, such as `[ ]`'s. For example: `...CSFS[S][F][V]L[N]WY...`. |
|
|
Then, use the following function to properly format the input. |
|
|
|
|
|
```python |
|
|
def format_prompt(antigen_sequence): |
|
|
epitope_seq = re.sub(r'\[([A-Z])\]', r'<epi>\1</epi>', antigen_sequence) |
|
|
formatted_str = f"Antigen: {epitope_seq}<|im_end|>\nAntibody:" |
|
|
return formatted_str |
|
|
``` |
|
|
|
|
|
3. Generate an Antibody Sequence |
|
|
|
|
|
```python |
|
|
prompt = format_prompt(antigen) |
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
inputs = {k: v.cuda() for k, v in inputs.items()} |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=1000, |
|
|
do_sample=True, |
|
|
temperature=0.7, |
|
|
pad_token_id=tokenizer.eos_token_id, |
|
|
use_cache=False, |
|
|
) |
|
|
|
|
|
full_text = tokenizer.decode(outputs[0], skip_special_tokens=False) |
|
|
antibody_sequence = full_text.split('<|im_end|>')[1].replace('Antibody: ', '') |
|
|
print(f"Antigen: {antigen}\nAntibody: {antibody_sequence}\n") |
|
|
``` |
|
|
|
|
|
This will generate a `|`-delimited output, which is an Fv portion of a heavy and light chain. |
|
|
|
|
|
```sh |
|
|
Antigen: NPPTFSPALL... |
|
|
Antibody: QVQLVQSGGG...|DIQMTQSPSS... |
|
|
``` |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
|
|
|
This model was trained with SFT. |
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- PEFT 0.17.0 |
|
|
- TRL: 0.19.1 |
|
|
- Transformers: 4.54.0 |
|
|
- Pytorch: 2.7.1 |
|
|
- Datasets: 4.0.0 |
|
|
- Tokenizers: 0.21.2 |