cocacola / README.md
skirano's picture
Upload folder using huggingface_hub
d847d1d verified
metadata
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - text-to-image
  - diffusers
  - lora
  - template:sd-lora
widget:
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-0.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-1.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-2.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-3.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-4.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-5.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-6.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-7.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-8.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-9.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-10.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-11.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-12.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-13.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-14.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-15.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-16.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-17.png
  - text: 'A photo of <s0><s1> a bottle of coke '
    output:
      url: image-18.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A photo of <s0><s1>
license: openrail++

SDXL LoRA DreamBooth - skirano/cocacola

Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke
Prompt
A photo of <s0><s1> a bottle of coke

Model description

These are skirano/cocacola LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

  • LoRA: download cocacola.safetensors here 💾.
    • Place it on your models/Lora folder.
    • On AUTOMATIC1111, load the LoRA by adding <lora:cocacola:1> to your prompt. On ComfyUI just load it as a regular LoRA.
  • Embeddings: download cocacola_emb.safetensors here 💾.
    • Place it on it on your embeddings folder
    • Use it by adding cocacola_emb to your prompt. For example, A photo of cocacola_emb (you need both the LoRA and the embeddings as they were trained together for this LoRA)

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('skirano/cocacola', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='skirano/cocacola', filename='cocacola_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('A photo of <s0><s1>').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.