File size: 6,072 Bytes
1914914 9f8531b 1914914 9f8531b 1914914 9f8531b 1914914 9f8531b 1914914 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# dreamo_helpers.py
# Módulo de serviço para o DreamO, com gestão de memória e aceitando uma lista dinâmica de referências.
import os
import cv2
import torch
import numpy as np
from PIL import Image
import huggingface_hub
import gc
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from torchvision.transforms.functional import normalize
from dreamo.dreamo_pipeline import DreamOPipeline
from dreamo.utils import img2tensor, tensor2img
from tools import BEN2
class Generator:
def __init__(self):
self.cpu_device = torch.device('cpu')
self.gpu_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Carregando modelos DreamO para a CPU...")
model_root = 'black-forest-labs/FLUX.1-dev'
self.dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
self.dreamo_pipeline.load_dreamo_model(self.cpu_device, use_turbo=True)
self.bg_rm_model = BEN2.BEN_Base().to(self.cpu_device).eval()
huggingface_hub.hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
self.face_helper = FaceRestoreHelper(
upscale_factor=1, face_size=512, crop_ratio=(1, 1),
det_model='retinaface_resnet50', save_ext='png', device=self.cpu_device,
)
print("Modelos DreamO prontos (na CPU).")
def to_gpu(self):
if self.gpu_device.type == 'cpu': return
print("Movendo modelos DreamO para a GPU...")
self.dreamo_pipeline.to(self.gpu_device)
self.bg_rm_model.to(self.gpu_device)
self.face_helper.device = self.gpu_device
self.dreamo_pipeline.t5_embedding.to(self.gpu_device)
self.dreamo_pipeline.task_embedding.to(self.gpu_device)
self.dreamo_pipeline.idx_embedding.to(self.gpu_device)
if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.gpu_device)
if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.gpu_device)
print("Modelos DreamO na GPU.")
def to_cpu(self):
if self.gpu_device.type == 'cpu': return
print("Descarregando modelos DreamO da GPU...")
self.dreamo_pipeline.to(self.cpu_device)
self.bg_rm_model.to(self.cpu_device)
self.face_helper.device = self.cpu_device
self.dreamo_pipeline.t5_embedding.to(self.cpu_device)
self.dreamo_pipeline.task_embedding.to(self.cpu_device)
self.dreamo_pipeline.idx_embedding.to(self.cpu_device)
if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.cpu_device)
if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.cpu_device)
gc.collect()
if torch.cuda.is_available(): torch.cuda.empty_cache()
@torch.inference_mode()
# <<<<< CORREÇÃO IMPLEMENTADA: Gerenciamento de GPU atômico por chamada >>>>>
def generate_image_with_gpu_management(self, reference_items, prompt, width, height):
try:
self.to_gpu() # Move os modelos para a GPU no início de CADA chamada
ref_conds = []
for idx, item in enumerate(reference_items):
ref_image_np = item.get('image_np')
ref_task = item.get('task')
if ref_image_np is not None:
if ref_task == "id":
ref_image = self.get_align_face(ref_image_np)
elif ref_task != "style":
ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np))
else: # Style usa a imagem original
ref_image = ref_image_np
ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0
ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16)
# O modelo DreamO espera o índice começando em 1
ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1})
image = self.dreamo_pipeline(
prompt=prompt,
width=width,
height=height,
num_inference_steps=12,
guidance_scale=4.5,
ref_conds=ref_conds,
generator=torch.Generator(device="cpu").manual_seed(42)
).images[0]
return image
finally:
self.to_cpu() # Garante que os modelos voltem para a CPU, mesmo se ocorrer um erro
@torch.no_grad()
def get_align_face(self, img):
# ... (lógica inalterada)
self.face_helper.clean_all()
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
self.face_helper.read_image(image_bgr)
self.face_helper.get_face_landmarks_5(only_center_face=True)
self.face_helper.align_warp_face()
if len(self.face_helper.cropped_faces) == 0: return None
align_face = self.face_helper.cropped_faces[0]
input_tensor = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
input_tensor = input_tensor.to(self.gpu_device)
parsing_out = self.face_helper.face_parse(normalize(input_tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(input_tensor)
face_features_image = torch.where(bg, white_image, input_tensor)
return tensor2img(face_features_image, rgb2bgr=False)
# --- Instância Singleton ---
print("Inicializando o Pintor de Cenas (DreamO Helper)...")
hf_token = os.getenv('HF_TOKEN')
if hf_token: huggingface_hub.login(token=hf_token)
dreamo_generator_singleton = Generator()
print("Pintor de Cenas (DreamO Helper) pronto.") |