File size: 6,072 Bytes
1914914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8531b
1914914
9f8531b
 
1914914
9f8531b
 
 
 
 
1914914
9f8531b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1914914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# dreamo_helpers.py
# Módulo de serviço para o DreamO, com gestão de memória e aceitando uma lista dinâmica de referências.

import os
import cv2
import torch
import numpy as np
from PIL import Image
import huggingface_hub
import gc
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from torchvision.transforms.functional import normalize
from dreamo.dreamo_pipeline import DreamOPipeline
from dreamo.utils import img2tensor, tensor2img
from tools import BEN2

class Generator:
    def __init__(self):
        self.cpu_device = torch.device('cpu')
        self.gpu_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        print("Carregando modelos DreamO para a CPU...")
        model_root = 'black-forest-labs/FLUX.1-dev'
        self.dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
        self.dreamo_pipeline.load_dreamo_model(self.cpu_device, use_turbo=True)
        
        self.bg_rm_model = BEN2.BEN_Base().to(self.cpu_device).eval()
        huggingface_hub.hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
        self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
        
        self.face_helper = FaceRestoreHelper(
            upscale_factor=1, face_size=512, crop_ratio=(1, 1),
            det_model='retinaface_resnet50', save_ext='png', device=self.cpu_device,
        )
        print("Modelos DreamO prontos (na CPU).")

    def to_gpu(self):
        if self.gpu_device.type == 'cpu': return
        print("Movendo modelos DreamO para a GPU...")
        self.dreamo_pipeline.to(self.gpu_device)
        self.bg_rm_model.to(self.gpu_device)
        self.face_helper.device = self.gpu_device
        self.dreamo_pipeline.t5_embedding.to(self.gpu_device)
        self.dreamo_pipeline.task_embedding.to(self.gpu_device)
        self.dreamo_pipeline.idx_embedding.to(self.gpu_device)
        if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.gpu_device)
        if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.gpu_device)
        print("Modelos DreamO na GPU.")

    def to_cpu(self):
        if self.gpu_device.type == 'cpu': return
        print("Descarregando modelos DreamO da GPU...")
        self.dreamo_pipeline.to(self.cpu_device)
        self.bg_rm_model.to(self.cpu_device)
        self.face_helper.device = self.cpu_device
        self.dreamo_pipeline.t5_embedding.to(self.cpu_device)
        self.dreamo_pipeline.task_embedding.to(self.cpu_device)
        self.dreamo_pipeline.idx_embedding.to(self.cpu_device)
        if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.cpu_device)
        if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.cpu_device)
        gc.collect()
        if torch.cuda.is_available(): torch.cuda.empty_cache()

    @torch.inference_mode()
    # <<<<< CORREÇÃO IMPLEMENTADA: Gerenciamento de GPU atômico por chamada >>>>>
    def generate_image_with_gpu_management(self, reference_items, prompt, width, height):
        try:
            self.to_gpu() # Move os modelos para a GPU no início de CADA chamada

            ref_conds = []
            
            for idx, item in enumerate(reference_items):
                ref_image_np = item.get('image_np')
                ref_task = item.get('task')
                
                if ref_image_np is not None:
                    if ref_task == "id":
                        ref_image = self.get_align_face(ref_image_np)
                    elif ref_task != "style":
                        ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np))
                    else: # Style usa a imagem original
                        ref_image = ref_image_np

                    ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0
                    ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16)
                    
                    # O modelo DreamO espera o índice começando em 1
                    ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1})
            
            image = self.dreamo_pipeline(
                prompt=prompt, 
                width=width,
                height=height,
                num_inference_steps=12, 
                guidance_scale=4.5,
                ref_conds=ref_conds, 
                generator=torch.Generator(device="cpu").manual_seed(42)
            ).images[0]

            return image

        finally:
            self.to_cpu() # Garante que os modelos voltem para a CPU, mesmo se ocorrer um erro


    @torch.no_grad()
    def get_align_face(self, img):
        # ... (lógica inalterada)
        self.face_helper.clean_all()
        image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        self.face_helper.read_image(image_bgr)
        self.face_helper.get_face_landmarks_5(only_center_face=True)
        self.face_helper.align_warp_face()
        if len(self.face_helper.cropped_faces) == 0: return None
        align_face = self.face_helper.cropped_faces[0]
        input_tensor = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
        input_tensor = input_tensor.to(self.gpu_device)
        parsing_out = self.face_helper.face_parse(normalize(input_tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
        parsing_out = parsing_out.argmax(dim=1, keepdim=True)
        bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
        bg = sum(parsing_out == i for i in bg_label).bool()
        white_image = torch.ones_like(input_tensor)
        face_features_image = torch.where(bg, white_image, input_tensor)
        return tensor2img(face_features_image, rgb2bgr=False)

# --- Instância Singleton ---
print("Inicializando o Pintor de Cenas (DreamO Helper)...")
hf_token = os.getenv('HF_TOKEN')
if hf_token: huggingface_hub.login(token=hf_token)
dreamo_generator_singleton = Generator()
print("Pintor de Cenas (DreamO Helper) pronto.")