VAREdit-8B-512 / README.md
cai-qi's picture
Update README.md
6320f4c verified
---
title: VAREdit-8B-512
emoji: πŸš€
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 5.27.0
app_file: app.py
pinned: false
license: mit
models:
- HiDream-ai/VAREdit
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# VAREdit
![VAREdit Demo](assets/demo.jpg)
[VAREdit](https://github.com/HiDream-ai/VAREdit) is an advanced image editing model built on the [Infinity](https://huggingface.co/FoundationVision/infinity) models, designed for high-quality instruction-based image editing.
## 🌟 Key Features
- **Strong Instruction Follow**: Follows instructions more accurately due to the autoregressive nature of the model.
- **Efficient Inference**: Optimized for fast generation with less than 1 seconds for 8B model.
- **Flexible Resolution**: Supports 512Γ—512 and 1024Γ—1024 image resolutions
![VAREdit Demo](assets/framework.jpg)
## πŸ“Š Model Variants
| Model Variant | Resolutions | HuggingFace Model | Time (H800) | VRAM (GB) |
|------------------|--------------|----------------------------------------------------------------------------------|----------|-----------|
| VAREdit-8B-512 | 512Γ—512 | [VAREdit-8B-512](https://huggingface.co/HiDream-ai/VAREdit) | ~0.7s | 50.41 |
| VAREdit-8B-1024 | 1024Γ—1024 | [VAREdit-8B-1024](https://huggingface.co/HiDream-ai/VAREdit) | ~1.99s | 50.41 |
## πŸš€ Quick Start
### Prerequisites
Before starting, ensure you have:
- Python 3.8+
- CUDA-compatible GPU with sufficient VRAM (8GB+ for 2B model, 24GB+ for 8B model)
- Required dependencies installed
### Installation
1. **Clone the repository**
```bash
git clone https://github.com/HiDream-ai/VAREdit.git
cd VAREdit
```
2. **Install dependencies**
```bash
pip install -r requirements.txt
```
3. **Download model checkpoints**
Download the VAREdit model checkpoints:
```bash
# Download from HuggingFace
git lfs install
git clone https://huggingface.co/HiDream-ai/VAREdit
```
### Basic Usage
```python
from infer import load_model, generate_image
model_components = load_model(
pretrain_root="HiDream-ai/VAREdit",
model_path="HiDream-ai/VAREdit/8B-1024.pth",
model_size="8B",
image_size=1024
)
# Generate edited image
edited_image = generate_image(
model_components,
src_img_path="assets/test.jpg",
instruction="Add glasses to this girl and change hair color to red",
cfg=3.0, # Classifier-free guidance scale
tau=0.1, # Temperature parameter
seed=42 # Optional random seed
)
```
## πŸ“ Detailed Configuration
### Model Sampling Parameters
| Parameter | Description | Default |
|-----------|-------------|---------|
| `cfg` | Classifier-free guidance scale | 3.0 |
| `tau` | Temperature for sampling | 1.0 |
| `seed` | Random seed for reproducibility | -1 (random) |
## πŸ“‚ Project Structure
```
VAREdit/
β”œβ”€β”€ infer.py # Main inference script
β”œβ”€β”€ infinity/ # Core model implementations
β”‚ β”œβ”€β”€ models/ # Model architectures
β”‚ β”œβ”€β”€ dataset/ # Data processing utilities
β”‚ └── utils/ # Helper functions
β”œβ”€β”€ tools/ # Additional tools and scripts
β”‚ └── run_infinity.py # Model execution utilities
β”œβ”€β”€ assets/ # Demo images and resources
└── README.md # This file
```
## πŸ“Š Performance Benchmarks
| **Method** | **Size** | **EMU-Edit Bal.** | **PIE-Bench Bal.** | **Time (A800)** |
|:---|:---:|:---:|:---:|:---:|
| InstructPix2Pix | 1.1B | 2.923 | 4.034 | 3.5s |
| UltraEdit | 7.7B | 4.541 | 5.580 | 2.6s |
| OmniGen | 3.8B | 4.674 | 3.492 | 16.5s |
| AnySD | 2.9B | 3.129 | 3.326 | 3.4s |
| EditAR | 0.8B | 3.305 | 4.707 | 45.5s |
| ACE++ | 16.9B | 2.076 | 2.574 | 5.7s |
| ICEdit | 17.0B | 4.785 | 4.933 | 8.4s |
| **VAREdit** (256px) | 2.2B | 5.565 | 6.684 | 0.5s |
| **VAREdit** (512px) | 2.2B | 5.662 | 6.996 | 0.7s |
| **VAREdit** (512px) | 8.4B | 7.7923 | 8.1055 | 1.2s |
| **VAREdit** (1024px) | 8.4B | 7.3797 | 7.6880 | 3.9s |
**Note**: The released 8B models are trained longer and on more data, so the performances are better than that in the paper.
## πŸ“„ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## πŸ“š Citation
If you use VAREdit in your research, please cite:
```bibtex
@article{varedit2025,
title={Visual Autoregressive Modeling for Instruction-Guided Image Editing},
author={Mao, Qingyang and Cai, Qi and Li, Yehao and Pan, Yingwei and Cheng, Mingyue and Yao, Ting and Liu, Qi and Mei, Tao},
journal={arXiv preprint},
year={2025}
}
```
## πŸ™ Acknowledgments
- Built on the [Infinity](https://huggingface.co/FoundationVision/infinity) models
**Note**: This project is under active development. Features and code may change.