Spaces:
Runtime error
Runtime error
# from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer | |
# import gradio as gr | |
# import torch | |
# from concurrent.futures import ThreadPoolExecutor | |
# from threading import Lock | |
# # Global cache and lock for thread-safety | |
# CACHE_SIZE = 100 | |
# prediction_cache = {} | |
# cache_lock = Lock() | |
# # Mapping for sentiment labels from cardiffnlp/twitter-roberta-base-sentiment | |
# SENTIMENT_LABEL_MAPPING = { | |
# "LABEL_0": "negative", | |
# "LABEL_1": "neutral", | |
# "LABEL_2": "positive" | |
# } | |
# def load_model(model_name): | |
# """ | |
# Loads the model with 8-bit quantization if a GPU is available; | |
# otherwise, loads the full model. | |
# """ | |
# if torch.cuda.is_available(): | |
# model = AutoModelForSequenceClassification.from_pretrained( | |
# model_name, load_in_8bit=True, device_map="auto" | |
# ) | |
# tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# device = 0 # GPU index | |
# else: | |
# model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# device = -1 | |
# return pipeline("text-classification", model=model, tokenizer=tokenizer, device=device) | |
# # Load both models concurrently at startup. | |
# with ThreadPoolExecutor() as executor: | |
# sentiment_future = executor.submit(load_model, "cardiffnlp/twitter-roberta-base-sentiment") | |
# emotion_future = executor.submit(load_model, "bhadresh-savani/bert-base-uncased-emotion") | |
# sentiment_pipeline = sentiment_future.result() | |
# emotion_pipeline = emotion_future.result() | |
# def analyze_text(text): | |
# # Check cache first (thread-safe) | |
# with cache_lock: | |
# if text in prediction_cache: | |
# return prediction_cache[text] | |
# try: | |
# # Run both model inferences in parallel. | |
# with ThreadPoolExecutor() as executor: | |
# future_sentiment = executor.submit(sentiment_pipeline, text) | |
# future_emotion = executor.submit(emotion_pipeline, text) | |
# sentiment_result = future_sentiment.result()[0] | |
# emotion_result = future_emotion.result()[0] | |
# # Remap the sentiment label to a human-readable format if available. | |
# raw_sentiment_label = sentiment_result.get("label", "") | |
# sentiment_label = SENTIMENT_LABEL_MAPPING.get(raw_sentiment_label, raw_sentiment_label) | |
# # Format the output with rounded scores. | |
# result = { | |
# "Sentiment": {sentiment_label: round(sentiment_result['score'], 4)}, | |
# "Emotion": {emotion_result['label']: round(emotion_result['score'], 4)} | |
# } | |
# except Exception as e: | |
# result = {"error": str(e)} | |
# # Update the cache in a thread-safe manner. | |
# with cache_lock: | |
# if len(prediction_cache) >= CACHE_SIZE: | |
# prediction_cache.pop(next(iter(prediction_cache))) | |
# prediction_cache[text] = result | |
# return result | |
# # Define the Gradio interface. | |
# demo = gr.Interface( | |
# fn=analyze_text, | |
# inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"), | |
# outputs=gr.JSON(label="Analysis Results"), | |
# title="π Fast Sentiment & Emotion Analysis", | |
# description="Optimized application that remaps sentiment labels and uses parallel processing.", | |
# examples=[ | |
# ["I'm thrilled to start this new adventure!"], | |
# ["This situation is making me really frustrated."], | |
# ["I feel so heartbroken and lost."] | |
# ], | |
# theme="soft", | |
# allow_flagging="never" | |
# ) | |
# # Warm up the models with a sample input. | |
# _ = analyze_text("Warming up models...") | |
# if __name__ == "__main__": | |
# # Bind to all interfaces for Hugging Face Spaces. | |
# demo.launch(server_name="0.0.0.0", server_port=7860) |