Spaces:
Sleeping
Sleeping
import os | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.chat_models import ChatOpenAI | |
from langchain.chains import RetrievalQA | |
from langchain.vectorstores import Pinecone | |
import pinecone | |
from consts import INDEX_NAME | |
# initialize pinecone client | |
pinecone.init(api_key=os.environ["PINECONE_API_KEY"], | |
environment=os.environ["PINECONE_ENVIRONMENT"]) | |
def run_llm(query: str) -> any: | |
embeddings = OpenAIEmbeddings() | |
# instance of vector db | |
docsearch = Pinecone.from_existing_index( | |
index_name=INDEX_NAME, embedding=embeddings) | |
chat = ChatOpenAI(verbose=True, temperature=0) | |
# The RetrievalQA chain needs a retriever, which we can create by using the .as_retriever() method | |
qa = RetrievalQA.from_chain_type( | |
llm=chat, chain_type="stuff", retriever=docsearch.as_retriever(), return_source_documents=True) | |
return qa({"query": query}) | |
if __name__ == '__main__': | |
print(run_llm("What are the core modules of LangChain?")) | |