Multimodal-PACA / app.py
TVRRaviteja's picture
Create app.py
8b1a242 verified
import gradio as gr # type: ignore
from utils import generate_audio_response, generate_text_response, set_user_response, transcribe_audio, personality_app, create_line_plot, predict_personality
from huggingface_hub import login # type: ignore
import os
# Function to handle audio input and update chatbot
def handle_audio_input(audio_file_path, chat_history):
if audio_file_path is not None:
# Transcribe the audio
output = transcribe_audio(audio_file_path)
personality_scores=personality_app(output)
# Update the chat history with the transcription
_, chat_history = set_user_response(output, chat_history)
return output, chat_history, personality_scores
return None, chat_history, None
def clear_audio():
return None
def hide_textbox():
return gr.Textbox(visible=False)
def open_textbox():
return gr.Textbox(visible=True)
# Function to handle the model selection
def update_selected_model(selected_model):
print(f"Selected model: {selected_model}")
return selected_model
with gr.Blocks() as demo:
gr.Markdown("<center><h1>Multimodal Personality Adaptive Conversational AI</h1></center>")
gr.Markdown("<center><h5>Personality Adaptive AI This application uses LLMs to create a personality adaptive conversational AI that interacts with users and displays personality scores. (Description with links goes here)</h5></center>")
with gr.Row():
with gr.Column(scale=6):
# Audio recording component
audio_input = gr.Microphone(sources=["microphone"], type="filepath", label="Tell Me How You're Feeling", container=True, interactive=True)
output_text = gr.Textbox(label="Transcription", placeholder="What you said appears here..")
chatbot = gr.Chatbot(label="Carebot", height=450) #Chatbot interface
msg = gr.Textbox(label="Type your message here:") # Textbox for user input
# with gr.Group():
with gr.Row():
Run = gr.Button("Run",variant="primary", size="sm")
clear = gr.ClearButton(size="sm") #To clear the chat
# generate = gr.Button("Generate", size="sm")
# save_chat = gr.Button("Save", size="sm")
# Display some query examples
examples = gr.Examples(examples=["I'm feeling Sad all the time", "Tell me a joke.", "Cheer Me Up!", "Tell me about Seattle"], inputs=msg)
#Clear the message
clear.click(lambda: None, None, chatbot, queue=False)
# Right side - Information, Visualization, and Dropdown
with gr.Column(scale=4):
# 1st component - Dropdown to choose models
model_selection = gr.Dropdown(
["Llama-2-7b-chat-Counsel-finetuned", "Llama-3-8B", "gpt-4", "gpt-3.5-turbo"], label="Models", info="Choose your LLM model", value="Llama-2-7b-chat-Counsel-finetuned")
# Textbox to display the selected model
selected_model = gr.Textbox(label="Selected Model", interactive=False, visible=False) # not displayed in the app
model_selection.change(fn=update_selected_model, inputs=model_selection, outputs=selected_model)
# 2nd component - Live Personality Score Visualization
personality_score = gr.LinePlot(x="Personality", y="Score",label="Personality Scores", height=300)
#Generate responses to the user's audio query
if audio_input is not None and output_text != None:
gr.on(audio_input.change, fn=handle_audio_input, inputs=[audio_input, chatbot], outputs=[output_text, chatbot, personality_score], queue=False).then(fn=generate_audio_response, inputs=[chatbot,selected_model], outputs=chatbot)
audio_input.change(clear_audio, inputs=None, outputs=audio_input)
pass
if msg is not None:
# Submit the response to LLM
gr.on(triggers=[msg.submit, Run.click],fn=personality_app, inputs=msg, outputs=personality_score).then(fn=set_user_response, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(fn=generate_text_response, inputs=[chatbot, selected_model], outputs=chatbot)
# Launch the Gradio app
demo.queue()
if __name__ == '__main__':
login(token = os.getenv("HF_TOKEN")) # HF Login
demo.launch()