Spaces:
Running
Running
File size: 19,935 Bytes
f513b53 b561129 11694c7 b561129 11694c7 b561129 11694c7 b561129 56d0815 b561129 11694c7 56d0815 b561129 11694c7 b561129 11694c7 b561129 11694c7 b561129 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import streamlit as st
import logging
import os
from io import BytesIO
import pdfplumber
from pdf2image import convert_from_bytes
from PIL import Image
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments
from datasets import load_dataset
from rank_bm25 import BM25Okapi
from rouge_score import rouge_scorer
import re
import time
import pytesseract
# Setup logging for Spaces
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Lazy load models
@st.cache_resource(ttl=1800)
def load_embeddings_model():
logger.info("Loading embeddings model")
try:
return SentenceTransformer("all-MiniLM-L6-v2")
except Exception as e:
logger.error(f"Embeddings load error: {str(e)}")
st.error(f"Embedding model error: {str(e)}")
return None
@st.cache_resource(ttl=1800)
def load_qa_pipeline():
logger.info("Loading QA pipeline")
try:
dataset = load_and_prepare_dataset()
if dataset:
fine_tuned_pipeline = fine_tune_qa_model(dataset)
if fine_tuned_pipeline:
return fine_tuned_pipeline
return pipeline("text2text-generation", model="google/flan-t5-small", max_length=300)
except Exception as e:
logger.error(f"QA model load error: {str(e)}")
st.error(f"QA model error: {str(e)}")
return None
@st.cache_resource(ttl=1800)
def load_summary_pipeline():
logger.info("Loading summary pipeline")
try:
return pipeline("summarization", model="facebook/bart-large-cnn", max_length=250)
except Exception as e:
logger.error(f"Summary model load error: {str(e)}")
st.error(f"Summary model error: {str(e)}")
return None
# Load and prepare dataset (e.g., SQuAD)
@st.cache_data(ttl=3600)
def load_and_prepare_dataset(dataset_name="squad", max_samples=1000):
logger.info(f"Loading dataset: {dataset_name}")
try:
dataset = load_dataset(dataset_name, split="train[:80%]")
dataset = dataset.shuffle(seed=42).select(range(min(max_samples, len(dataset))))
def preprocess(examples):
inputs = [f"question: {q} context: {c}" for q, c in zip(examples['question'], examples['context'])]
targets = examples['answers']['text']
return {'input_text': inputs, 'target_text': [t[0] if t else "" for t in targets]}
dataset = dataset.map(preprocess, batched=True, remove_columns=dataset.column_names)
return dataset
except Exception as e:
logger.error(f"Dataset load error: {str(e)}")
return None
# Fine-tune QA model
@st.cache_resource(ttl=3600)
def fine_tune_qa_model(dataset):
logger.info("Starting fine-tuning")
try:
model_name = "google/flan-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def tokenize_function(examples):
model_inputs = tokenizer(examples['input_text'], max_length=512, truncation=True, padding="max_length")
labels = tokenizer(examples['target_text'], max_length=128, truncation=True, padding="max_length")
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=['input_text', 'target_text'])
training_args = TrainingArguments(
output_dir="./fine_tuned_model",
num_train_epochs=2,
per_device_train_batch_size=4,
save_steps=500,
logging_steps=100,
evaluation_strategy="no",
learning_rate=3e-5,
fp16=False,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
)
trainer.train()
model.save_pretrained("./fine_tuned_model")
tokenizer.save_pretrained("./fine_tuned_model")
logger.info("Fine-tuning complete")
return pipeline("text2text-generation", model="./fine_tuned_model", tokenizer="./fine_tuned_model", max_length=300)
except Exception as e:
logger.error(f"Fine-tuning error: {str(e)}")
return None
# Augment vector store with dataset
def augment_vector_store(vector_store, dataset_name="squad", max_samples=300):
logger.info(f"Augmenting vector store with dataset: {dataset_name}")
try:
dataset = load_dataset(dataset_name, split="train").select(range(min(max_samples, len(dataset))))
chunks = [f"Context: {c}\nAnswer: {a['text'][0]}" for c, a in zip(dataset['context'], dataset['answers'])]
embeddings_model = load_embeddings_model()
if embeddings_model and vector_store:
embeddings = embeddings_model.encode(chunks, batch_size=128, show_progress_bar=False)
vector_store.add_embeddings(zip(chunks, embeddings))
return vector_store
except Exception as e:
logger.error(f"Vector store augmentation error: {str(e)}")
return vector_store
# Process PDF with enhanced extraction and OCR fallback
def process_pdf(uploaded_file):
logger.info("Processing PDF with enhanced extraction")
try:
text = ""
code_blocks = []
images = []
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf:
for page in pdf.pages[:8]:
extracted = page.extract_text(layout=False)
if not extracted:
try:
img = page.to_image(resolution=150).original
extracted = pytesseract.image_to_string(img, config='--psm 6')
images.append(img)
except Exception as ocr_e:
logger.warning(f"OCR failed: {str(ocr_e)}")
if extracted:
lines = extracted.split("\n")
cleaned_lines = [line for line in lines if not re.match(r'^\s*(Page \d+|.*\d{4}-\d{4}|Copyright.*)\s*$', line, re.I)]
text += "\n".join(cleaned_lines) + "\n"
for char in page.chars:
if 'fontname' in char and 'mono' in char['fontname'].lower():
code_blocks.append(char['text'])
code_text = page.extract_text()
code_matches = re.finditer(r'(^\s{2,}.*?(?:\n\s{2,}.*?)*)', code_text, re.MULTILINE)
for match in code_matches:
code_blocks.append(match.group().strip())
tables = page.extract_tables()
if tables:
for table in tables:
text += "\n".join([" | ".join(map(str, row)) for row in table if row]) + "\n"
for obj in page.extract_words():
if obj.get('size', 0) > 12:
text += f"\n{obj['text']}\n"
code_text = "\n".join(code_blocks).strip()
if not text:
raise ValueError("No text extracted from PDF")
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=250, chunk_overlap=40, keep_separator=True)
text_chunks = text_splitter.split_text(text)[:25]
code_chunks = text_splitter.split_text(code_text)[:10] if code_text else []
embeddings_model = load_embeddings_model()
if not embeddings_model:
return None, None, text, code_text, images
text_vector_store = FAISS.from_embeddings(
zip(text_chunks, [embeddings_model.encode(chunk, show_progress_bar=False, batch_size=128) for chunk in text_chunks]),
embeddings_model.encode
) if text_chunks else None
code_vector_store = FAISS.from_embeddings(
zip(code_chunks, [embeddings_model.encode(chunk, show_progress_bar=False, batch_size=128) for chunk in code_chunks]),
embeddings_model.encode
) if code_chunks else None
if text_vector_store:
text_vector_store = augment_vector_store(text_vector_store)
logger.info("PDF processed successfully")
return text_vector_store, code_vector_store, text, code_text, images
except Exception as e:
logger.error(f"PDF processing error: {str(e)}")
st.error(f"PDF error: {str(e)}")
return None, None, "", "", []
# Summarize PDF with ROUGE metrics and improved topic focus
def summarize_pdf(text):
logger.info("Generating summary")
try:
summary_pipeline = load_summary_pipeline()
if not summary_pipeline:
return "Summary model unavailable."
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=250, chunk_overlap=40)
chunks = text_splitter.split_text(text)
# Hybrid search for relevant chunks
embeddings_model = load_embeddings_model()
if embeddings_model and chunks:
temp_vector_store = FAISS.from_embeddings(
zip(chunks, [embeddings_model.encode(chunk, show_progress_bar=False) for chunk in chunks]),
embeddings_model.encode
)
bm25 = BM25Okapi([chunk.split() for chunk in chunks])
query = "main topic and key points"
bm25_docs = bm25.get_top_n(query.split(), chunks, n=4)
faiss_docs = temp_vector_store.similarity_search(query, k=4)
selected_chunks = list(set(bm25_docs + [doc.page_content for doc in faiss_docs]))[:4]
else:
selected_chunks = chunks[:4]
summaries = []
for chunk in selected_chunks:
summary = summary_pipeline(f"Summarize the main topic and key points in detail: {chunk[:250]}", max_length=100, min_length=50, do_sample=False)[0]['summary_text']
summaries.append(summary.strip())
combined_summary = " ".join(summaries)
if len(combined_summary.split()) > 250:
combined_summary = " ".join(combined_summary.split()[:250])
word_count = len(combined_summary.split())
scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)
scores = scorer.score(text[:500], combined_summary)
logger.info(f"ROUGE scores: {scores}")
return f"**Main Topic Summary** ({word_count} words):\n{combined_summary}\n\n**ROUGE-1**: {scores['rouge1'].fmeasure:.2f}"
except Exception as e:
logger.error(f"Summary error: {str(e)}")
return f"Oops, something went wrong summarizing: {str(e)}"
# Answer question with hybrid search
def answer_question(text_vector_store, code_vector_store, query):
logger.info(f"Processing query: {query}")
try:
if not text_vector_store and not code_vector_store:
return "Please upload a PDF first!"
qa_pipeline = load_qa_pipeline()
if not qa_pipeline:
return "Sorry, the QA model is unavailable right now."
is_code_query = any(keyword in query.lower() for keyword in ["code", "script", "function", "programming", "give me code", "show code"])
if is_code_query and code_vector_store:
docs = code_vector_store.similarity_search(query, k=3)
code = "\n".join(doc.page_content for doc in docs)
explanation = qa_pipeline(f"Explain this code: {code[:500]}")[0]['generated_text']
return f"**Code**:\n```python\n{code}\n```\n**Explanation**:\n{explanation}"
vector_store = text_vector_store
if not vector_store:
return "No relevant content found for your query."
# Hybrid search: FAISS + BM25
text_chunks = [doc.page_content for doc in vector_store.similarity_search(query, k=10)]
bm25 = BM25Okapi([chunk.split() for chunk in text_chunks])
bm25_docs = bm25.get_top_n(query.split(), text_chunks, n=5)
faiss_docs = vector_store.similarity_search(query, k=5)
combined_docs = list(set(bm25_docs + [doc.page_content for doc in faiss_docs]))[:5]
context = "\n".join(combined_docs)
prompt = f"Use the following PDF content to answer the question accurately and concisely. Avoid speculation and focus on the provided context:\n\n{context}\n\nQuestion: {query}\nAnswer:"
response = qa_pipeline(prompt)[0]['generated_text']
logger.info("Answer generated")
return f"**Answer**:\n{response.strip()}\n\n**Source Context**:\n{context[:500]}..."
except Exception as e:
logger.error(f"Query error: {str(e)}")
return f"Sorry, something went wrong: {str(e)}"
# Streamlit UI
try:
st.set_page_config(page_title="Smart PDF Q&A", page_icon="📄", layout="wide")
st.markdown("""
<style>
.main { max-width: 900px; margin: 0 auto; padding: 20px; }
.sidebar { background-color: #f8f9fa; padding: 10px; border-radius: 5px; }
.message { margin: 10px 0; padding: 10px; border-radius: 5px; display: block; }
.user { background-color: #e6f3ff; }
.assistant { background-color: #f0f0f0; }
.dark .user { background-color: #2a2a72; color: #fff; }
.dark .assistant { background-color: #2e2e2e; color: #fff; }
.stButton>button { background-color: #4CAF50; color: white; border: none; padding: 8px 16px; border-radius: 5px; }
.stButton>button:hover { background-color: #45a049; }
pre { background-color: #f8f8f8; padding: 10px; border-radius: 5px; overflow-x: auto; }
.header { background: linear-gradient(90deg, #4CAF50, #81C784); color: white; padding: 10px; border-radius: 5px; text-align: center; }
.progress-bar { background-color: #e0e0e0; border-radius: 5px; height: 10px; }
.progress-fill { background-color: #4CAF50; height: 100%; border-radius: 5px; transition: width 0.5s ease; }
</style>
""", unsafe_allow_html=True)
st.markdown('<div class="header"><h1>Smart PDF Q&A</h1></div>', unsafe_allow_html=True)
st.markdown("Upload a PDF to ask questions, summarize (~150 words), or extract code with 'give me code'. Fast and friendly responses!")
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "Hello! Upload a PDF and process it to start chatting."}]
if "text_vector_store" not in st.session_state:
st.session_state.text_vector_store = None
if "code_vector_store" not in st.session_state:
st.session_state.code_vector_store = None
if "pdf_text" not in st.session_state:
st.session_state.pdf_text = ""
if "code_text" not in st.session_state:
st.session_state.code_text = ""
if "images" not in st.session_state:
st.session_state.images = []
# Sidebar with toggle
with st.sidebar:
st.markdown('<div class="sidebar">', unsafe_allow_html=True)
theme = st.radio("Theme", ["Light", "Dark"], index=0)
dataset_name = st.selectbox("Select Dataset for Fine-Tuning", ["squad", "cnn_dailymail", "bigcode/the-stack"], index=0)
if st.button("Fine-Tune Model"):
progress_bar = st.progress(0)
for i in range(100):
time.sleep(0.008)
progress_bar.progress(i + 1)
dataset = load_and_prepare_dataset(dataset_name=dataset_name)
if dataset:
fine_tuned_pipeline = fine_tune_qa_model(dataset)
if fine_tuned_pipeline:
st.success("Model fine-tuned successfully!")
else:
st.error("Fine-tuning failed.")
if st.button("Clear Chat"):
st.session_state.messages = []
st.experimental_rerun()
if st.button("Retry Summarization") and st.session_state.pdf_text:
progress_bar = st.progress(0)
with st.spinner("Retrying summarization..."):
for i in range(100):
time.sleep(0.008)
progress_bar.progress(i + 1)
summary = summarize_pdf(st.session_state.pdf_text)
st.session_state.messages.append({"role": "assistant", "content": summary})
st.markdown(summary, unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# PDF upload and processing
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
col1, col2 = st.columns([1, 1])
with col1:
if st.button("Process PDF"):
progress_bar = st.progress(0)
with st.spinner("Processing PDF..."):
for i in range(100):
time.sleep(0.02)
progress_bar.progress(i + 1)
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text, st.session_state.images = process_pdf(uploaded_file)
if st.session_state.text_vector_store or st.session_state.code_vector_store:
st.success("PDF processed! Ask away or summarize.")
st.session_state.messages = [{"role": "assistant", "content": "PDF processed! What would you like to know?"}]
else:
st.error("Failed to process PDF.")
with col2:
if st.button("Summarize PDF") and st.session_state.pdf_text:
progress_bar = st.progress(0)
with st.spinner("Summarizing..."):
for i in range(100):
time.sleep(0.008)
progress_bar.progress(i + 1)
summary = summarize_pdf(st.session_state.pdf_text)
st.session_state.messages.append({"role": "assistant", "content": summary})
st.markdown(summary, unsafe_allow_html=True)
# Chat interface
if st.session_state.text_vector_store or st.session_state.code_vector_store:
prompt = st.chat_input("Ask a question (e.g., 'Give me code' or 'What’s the main idea?'):")
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
progress_bar = st.progress(0)
with st.spinner('<div class="spinner">⏳ Processing...</div>'):
for i in range(100):
time.sleep(0.004)
progress_bar.progress(i + 1)
answer = answer_question(st.session_state.text_vector_store, st.session_state.code_vector_store, prompt)
st.markdown(answer, unsafe_allow_html=True)
st.session_state.messages.append({"role": "assistant", "content": answer})
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"], unsafe_allow_html=True)
# Display extracted images
if st.session_state.images:
st.header("Extracted Images")
for img in st.session_state.images:
st.image(img, caption="Extracted PDF Image", use_column_width=True)
# Download chat history
if st.session_state.messages:
chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages)
st.download_button("Download Chat History", chat_text, "chat_history.txt")
except Exception as e:
logger.error(f"App initialization failed: {str(e)}")
st.error(f"App failed to start: {str(e)}. Check Spaces logs or contact support.") |