Spaces:
Sleeping
Sleeping
File size: 4,451 Bytes
b6a5faf 5cb2be5 b6a5faf 5cb2be5 b48e9ef 5cb2be5 b48e9ef 5cb2be5 b48e9ef 5cb2be5 b48e9ef 5cb2be5 b48e9ef 5cb2be5 b48e9ef 5cb2be5 b48e9ef 5cb2be5 b48e9ef 5cb2be5 b48e9ef 5cb2be5 b48e9ef 5cb2be5 13c9d14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
# This code is based on Sanchit Gandhi's MusicGen-Streaming: https://huggingface.co/spaces/sanchit-gandhi/musicgen-streaming
from queue import Queue
from threading import Thread
import numpy as np
import torch
from transformers import MusicgenForConditionalGeneration, MusicgenProcessor, set_seed
import gradio as gr
import spaces
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
processor = MusicgenProcessor.from_pretrained("facebook/musicgen-small")
title = "AI Radio"
class MusicgenStreamer:
def __init__(self, model, device=None, play_steps=10, stride=None, timeout=None):
self.decoder, self.audio_encoder, self.generation_config = model.decoder, model.audio_encoder, model.generation_config
self.device = device or model.device
self.play_steps = play_steps
self.stride = stride or np.prod(self.audio_encoder.config.upsampling_ratios) * (play_steps - self.decoder.num_codebooks) // 6
self.token_cache, self.to_yield, self.audio_queue, self.timeout = None, 0, Queue(), timeout
self.stop_signal = object()
def apply_delay_pattern_mask(self, input_ids):
_, mask = self.decoder.build_delay_pattern_mask(input_ids[:, :1], pad_token_id=self.generation_config.decoder_start_token_id, max_length=input_ids.shape[-1])
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, mask)
input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape(1, self.decoder.num_codebooks, -1)[None, ...]
return self.audio_encoder.decode(input_ids.to(self.audio_encoder.device), audio_scales=[None]).audio_values[0, 0].cpu().float().numpy()
def put(self, value):
if value.shape[0] // self.decoder.num_codebooks > 1:
raise ValueError("MusicgenStreamer only supports batch size 1")
self.token_cache = torch.cat([self.token_cache, value[:, None]], dim=-1) if self.token_cache else value
if self.token_cache.shape[-1] % self.play_steps == 0:
audio_values = self.apply_delay_pattern_mask(self.token_cache)
self.on_finalized_audio(audio_values[self.to_yield:-self.stride])
self.to_yield += len(audio_values) - self.to_yield - self.stride
def end(self):
audio_values = self.apply_delay_pattern_mask(self.token_cache) if self.token_cache else np.zeros(self.to_yield)
self.on_finalized_audio(audio_values[self.to_yield:], stream_end=True)
def on_finalized_audio(self, audio, stream_end=False):
self.audio_queue.put(audio, timeout=self.timeout)
if stream_end:
self.audio_queue.put(self.stop_signal, timeout=self.timeout)
def __iter__(self):
return self
def __next__(self):
value = self.audio_queue.get(timeout=self.timeout)
if value is self.stop_signal:
raise StopIteration()
return value
@spaces.GPU()
def generate_audio(text_prompt, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
if device != model.device:
model.to(device)
if device == "cuda:0":
model.half()
max_new_tokens = int(model.audio_encoder.config.frame_rate * audio_length_in_s)
play_steps = int(model.audio_encoder.config.frame_rate * play_steps_in_s)
inputs = processor(text=text_prompt, padding=True, return_tensors="pt")
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps)
Thread(target=model.generate, kwargs=dict(**inputs.to(device), streamer=streamer, max_new_tokens=max_new_tokens)).start()
set_seed(seed)
for new_audio in streamer:
print(f"Sample of length: {round(new_audio.shape[0] / model.audio_encoder.config.sampling_rate, 2)} seconds")
yield model.audio_encoder.config.sampling_rate, new_audio
demo = gr.Interface(
fn=generate_audio,
inputs=[
gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"),
gr.Slider(10, 30, value=15, step=5, label="Audio length in seconds"),
gr.Slider(0.5, 2.5, value=1.5, step=0.5, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps"),
gr.Slider(0, 10, value=5, step=1, label="Seed for random generations"),
],
outputs=[gr.Audio(label="Generated Music", streaming=True, autoplay=True)],
title=title,
cache_examples=False,
)
demo.queue().launch() |