Spaces:
Sleeping
Sleeping
# This code is based on Sanchit Gandhi's MusicGen-Streaming: https://huggingface.co/spaces/sanchit-gandhi/musicgen-streaming | |
from queue import Queue | |
from threading import Thread | |
import numpy as np | |
import torch | |
from transformers import MusicgenForConditionalGeneration, MusicgenProcessor, set_seed | |
import gradio as gr | |
import spaces | |
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") | |
processor = MusicgenProcessor.from_pretrained("facebook/musicgen-small") | |
title = "AI Radio" | |
class MusicgenStreamer: | |
def __init__(self, model, device=None, play_steps=10, stride=None, timeout=None): | |
self.decoder, self.audio_encoder, self.generation_config = model.decoder, model.audio_encoder, model.generation_config | |
self.device = device or model.device | |
self.play_steps = play_steps | |
self.stride = stride or np.prod(self.audio_encoder.config.upsampling_ratios) * (play_steps - self.decoder.num_codebooks) // 6 | |
self.token_cache, self.to_yield, self.audio_queue, self.timeout = None, 0, Queue(), timeout | |
self.stop_signal = object() | |
def apply_delay_pattern_mask(self, input_ids): | |
_, mask = self.decoder.build_delay_pattern_mask(input_ids[:, :1], pad_token_id=self.generation_config.decoder_start_token_id, max_length=input_ids.shape[-1]) | |
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, mask) | |
input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape(1, self.decoder.num_codebooks, -1)[None, ...] | |
return self.audio_encoder.decode(input_ids.to(self.audio_encoder.device), audio_scales=[None]).audio_values[0, 0].cpu().float().numpy() | |
def put(self, value): | |
if value.shape[0] // self.decoder.num_codebooks > 1: | |
raise ValueError("MusicgenStreamer only supports batch size 1") | |
self.token_cache = torch.cat([self.token_cache, value[:, None]], dim=-1) if self.token_cache else value | |
if self.token_cache.shape[-1] % self.play_steps == 0: | |
audio_values = self.apply_delay_pattern_mask(self.token_cache) | |
self.on_finalized_audio(audio_values[self.to_yield:-self.stride]) | |
self.to_yield += len(audio_values) - self.to_yield - self.stride | |
def end(self): | |
audio_values = self.apply_delay_pattern_mask(self.token_cache) if self.token_cache else np.zeros(self.to_yield) | |
self.on_finalized_audio(audio_values[self.to_yield:], stream_end=True) | |
def on_finalized_audio(self, audio, stream_end=False): | |
self.audio_queue.put(audio, timeout=self.timeout) | |
if stream_end: | |
self.audio_queue.put(self.stop_signal, timeout=self.timeout) | |
def __iter__(self): | |
return self | |
def __next__(self): | |
value = self.audio_queue.get(timeout=self.timeout) | |
if value is self.stop_signal: | |
raise StopIteration() | |
return value | |
def generate_audio(text_prompt, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0): | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
if device != model.device: | |
model.to(device) | |
if device == "cuda:0": | |
model.half() | |
max_new_tokens = int(model.audio_encoder.config.frame_rate * audio_length_in_s) | |
play_steps = int(model.audio_encoder.config.frame_rate * play_steps_in_s) | |
inputs = processor(text=text_prompt, padding=True, return_tensors="pt") | |
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps) | |
Thread(target=model.generate, kwargs=dict(**inputs.to(device), streamer=streamer, max_new_tokens=max_new_tokens)).start() | |
set_seed(seed) | |
for new_audio in streamer: | |
print(f"Sample of length: {round(new_audio.shape[0] / model.audio_encoder.config.sampling_rate, 2)} seconds") | |
yield model.audio_encoder.config.sampling_rate, new_audio | |
demo = gr.Interface( | |
fn=generate_audio, | |
inputs=[ | |
gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"), | |
gr.Slider(10, 30, value=15, step=5, label="Audio length in seconds"), | |
gr.Slider(0.5, 2.5, value=1.5, step=0.5, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps"), | |
gr.Slider(0, 10, value=5, step=1, label="Seed for random generations"), | |
], | |
outputs=[gr.Audio(label="Generated Music", streaming=True, autoplay=True)], | |
title=title, | |
cache_examples=False, | |
) | |
demo.queue().launch() |