Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,924 Bytes
30ef1d4 1557b00 3c739a1 75c3f8c 33f2b2c fa004d4 48e09b8 109fb13 3c739a1 109fb13 3c739a1 109fb13 1557b00 30ef1d4 e6ae8f1 30ef1d4 109fb13 348a268 109fb13 30ef1d4 3c73224 109fb13 3c73224 7a9fdcc 8d2365b 7a9fdcc 8d2365b 7a9fdcc 8d2365b 7a9fdcc 8d2365b 7a9fdcc 48e09b8 75c3f8c 48e09b8 109fb13 48e09b8 4cff703 48e09b8 ece7108 48e09b8 109fb13 ea7e643 3c739a1 8cafaac 109fb13 8cafaac c45c066 8cafaac c45c066 ea7e643 c45c066 8cafaac c45c066 109fb13 30ef1d4 109fb13 8cafaac 109fb13 30ef1d4 48e09b8 109fb13 ea7e643 109fb13 75c3f8c 109fb13 75c3f8c 30ef1d4 109fb13 33cf987 374d720 22c8c96 5c22f96 5e545f6 9990132 a81d596 9990132 37d4ad6 9990132 374d720 48e09b8 109fb13 6f09e8c 109fb13 ece7108 109fb13 4746dfe 109fb13 4746dfe 109fb13 4746dfe 6f09e8c 4746dfe 109fb13 4746dfe ea7e643 109fb13 4746dfe 109fb13 48e09b8 109fb13 4746dfe 48e09b8 4746dfe 109fb13 4746dfe 109fb13 4746dfe 48e09b8 33cf987 48e09b8 109fb13 48e09b8 109fb13 48e09b8 109fb13 33cf987 48e09b8 109fb13 48e09b8 109fb13 a6954be 109fb13 48e09b8 109fb13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import spaces
import torch
from datasets import load_dataset
from huggingface_hub import CommitScheduler
from pathlib import Path
import uuid
import json
import time
from datetime import datetime
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger("darija-llm")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
logger.info(f'Using device: {device}')
# token
token = os.environ['TOKEN']
# Load the pretrained model and tokenizer
MODEL_NAME = "atlasia/Al-Atlas-0.5B" # "atlasia/Al-Atlas-LLM-mid-training" # "BounharAbdelaziz/Al-Atlas-LLM-0.5B" #"atlasia/Al-Atlas-LLM"
logger.info(f"Loading model: {MODEL_NAME}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,token=token) # , token=token
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,token=token).to(device)
logger.info("Model loaded successfully")
# Fix tokenizer padding
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token # Set pad token
logger.info("Set pad_token to eos_token")
# Predefined examples
examples = [
["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز"
, 256, 0.7, 0.9, 100, 4, 1.5],
["المستقبل ديال الذكاء الصناعي فالمغرب"
, 256, 0.7, 0.9, 100, 4, 1.5],
[" المطبخ المغربي"
, 256, 0.7, 0.9, 100, 4, 1.5],
["الماكلة المغربية كتعتبر من أحسن الماكلات فالعالم"
, 256, 0.7, 0.9, 100, 4, 1.5],
]
# Define the file where to save the data
submit_file = Path("user_submit/") / f"data_{uuid.uuid4()}.json"
feedback_file = submit_file
# Create directory if it doesn't exist
submit_file.parent.mkdir(exist_ok=True, parents=True)
logger.info(f"Created feedback file: {feedback_file}")
scheduler = CommitScheduler(
repo_id="atlasia/atlaset_inference_ds",
repo_type="dataset",
folder_path=submit_file.parent,
path_in_repo="data",
every=5,
token=token
)
logger.info(f"Initialized CommitScheduler for repo: atlasia/atlaset_inference_ds")
# Track usage statistics
usage_stats = {
"total_generations": 0,
"total_tokens_generated": 0,
"start_time": time.time()
}
@spaces.GPU
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5, progress=gr.Progress()):
if not prompt.strip():
logger.warning("Empty prompt submitted")
return "", "الرجاء إدخال نص للتوليد (Please enter text to generate)"
logger.info(f"Generating text for prompt: '{prompt[:50]}...' (length: {len(prompt)})")
logger.info(f"Parameters: max_length={max_length}, temp={temperature}, top_p={top_p}, top_k={top_k}, beams={num_beams}, rep_penalty={repetition_penalty}")
start_time = time.time()
# Start progress
progress(0, desc="تجهيز النموذج (Preparing model)")
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
progress(0.1, desc="تحليل النص (Tokenizing)")
# Generate text with optimized parameters for speed
progress(0.2, desc="توليد النص (Generating text)")
output = model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
top_p=top_p,
do_sample=True,
repetition_penalty=repetition_penalty,
num_beams=1 if num_beams > 4 else num_beams, # Reduce beam search or use greedy decoding
top_k=top_k,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True, # Ensure cache is used
)
# Decode output
progress(0.9, desc="معالجة النتائج (Processing results)")
result = tokenizer.decode(output[0], skip_special_tokens=True)
# Update stats
generation_time = time.time() - start_time
token_count = len(output[0])
with scheduler.lock:
usage_stats["total_generations"] += 1
usage_stats["total_tokens_generated"] += token_count
logger.info(f"Generated {token_count} tokens in {generation_time:.2f}s")
logger.info(f"Result: '{result[:50]}...' (length: {len(result)})")
# Save feedback with additional metadata
save_feedback(
prompt,
result,
{
"max_length": max_length,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"num_beams": num_beams,
"repetition_penalty": repetition_penalty,
"generation_time": generation_time,
"token_count": token_count,
"timestamp": datetime.now().isoformat()
}
)
progress(1.0, desc="اكتمل (Complete)")
return result, f"تم توليد {token_count} رمز في {generation_time:.2f} ثانية (Generated {token_count} tokens in {generation_time:.2f} seconds)"
def save_feedback(input, output, params) -> None:
"""
Append input/outputs and parameters to a JSON Lines file using a thread lock
to avoid concurrent writes from different users.
"""
logger.info(f"Saving feedback to {feedback_file}")
with scheduler.lock:
try:
with feedback_file.open("a") as f:
f.write(json.dumps({
"input": input,
"output": output,
"params": params
}))
f.write("\n")
logger.info("Feedback saved successfully")
except Exception as e:
logger.error(f"Error saving feedback: {str(e)}")
def get_stats():
"""Return current usage statistics"""
with scheduler.lock:
uptime = time.time() - usage_stats["start_time"]
hours = uptime / 3600
stats = {
"Total generations": usage_stats["total_generations"],
"Total tokens generated": usage_stats["total_tokens_generated"],
"Uptime": f"{int(hours)}h {int((hours % 1) * 60)}m",
"Generations per hour": f"{usage_stats['total_generations'] / hours:.1f}" if hours > 0 else "N/A",
"Last updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
logger.info(f"Stats requested: {stats}")
return stats
def reset_params():
"""Reset parameters to default values"""
logger.info("Parameters reset to defaults")
return 128, 0.7, 0.9, 50, 1, 1.2 # Updated defaults for faster generation
def thumbs_up_callback(input_text, output_text):
"""Record positive feedback"""
logger.info("Received positive feedback")
feedback_path = Path("user_submit") / "positive_feedback.jsonl"
feedback_path.parent.mkdir(exist_ok=True, parents=True)
with scheduler.lock:
try:
with feedback_path.open("a") as f:
feedback_data = {
"input": input_text,
"output": output_text,
"rating": "positive",
"timestamp": datetime.now().isoformat()
}
f.write(json.dumps(feedback_data))
f.write("\n")
logger.info(f"Positive feedback saved to {feedback_path}")
except Exception as e:
logger.error(f"Error saving positive feedback: {str(e)}")
return "شكرا على التقييم الإيجابي!"
def thumbs_down_callback(input_text, output_text, feedback=""):
"""Record negative feedback"""
logger.info(f"Received negative feedback: '{feedback}'")
feedback_path = Path("user_submit") / "negative_feedback.jsonl"
feedback_path.parent.mkdir(exist_ok=True, parents=True)
with scheduler.lock:
try:
with feedback_path.open("a") as f:
feedback_data = {
"input": input_text,
"output": output_text,
"rating": "negative",
"feedback": feedback,
"timestamp": datetime.now().isoformat()
}
f.write(json.dumps(feedback_data))
f.write("\n")
logger.info(f"Negative feedback saved to {feedback_path}")
except Exception as e:
logger.error(f"Error saving negative feedback: {str(e)}")
return "شكرا على ملاحظاتك!"
if __name__ == "__main__":
logger.info("Starting Moroccan Darija LLM application")
# Create the Gradio interface
with gr.Blocks(css="""
footer {visibility: hidden}
.center-text {text-align: center; margin: 0 auto; max-width: 900px;}
.header-text {font-size: 2.5rem; font-weight: bold; margin-bottom: 0.5rem;}
.subheader-text {font-size: 1.2rem; margin-bottom: 2rem;}
.flag-emoji {font-size: 3rem;}
""") as app:
with gr.Row(elem_classes=["center-text"]):
gr.Markdown("""
# 🇲🇦🇲🇦🇲🇦
# Al-Atlas-0.5B-base
""")
with gr.Row():
gr.Markdown("""
This is a pretrained model to do text generation in a continuation of text fashion. Do not expect it to behave as a Chat (Instruct) model. The latter is coming soon!
This model is pretrained on Moroccan darija in **Arabic scripts** (mainly).
""")
with gr.Row():
with gr.Column(scale=6):
prompt_input = gr.Textbox(
label="Prompt ",
placeholder="اكتب هنا...",
lines=4, rtl=True
)
with gr.Row():
submit_btn = gr.Button("Generate", variant="primary")
clear_btn = gr.Button("Clear")
reset_btn = gr.Button("Reset Parameters")
with gr.Accordion("Generation Parameters", open=False):
with gr.Row():
with gr.Column():
max_length = gr.Slider(8, 4096, value=128, label="Max Length") # Reduced default
temperature = gr.Slider(0.0, 2, value=0.7, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, label="Top-p")
with gr.Column():
top_k = gr.Slider(1, 10000, value=50, label="Top-k") # Reduced default
num_beams = gr.Slider(1, 20, value=1, label="Number of Beams") # Reduced default
repetition_penalty = gr.Slider(0.0, 100.0, value=1.2, label="Repetition Penalty") # Reduced default
with gr.Column(scale=6):
output_text = gr.Textbox(label="Generated Text", lines=10, rtl=True)
generation_info = gr.Markdown("")
with gr.Row():
thumbs_up = gr.Button("👍 ناضي")
thumbs_down = gr.Button("👎 عيان")
with gr.Accordion("Feedback", open=False, visible=False) as feedback_accordion:
feedback_text = gr.Textbox(label="Why didn't you like the output?", lines=2, rtl=True)
submit_feedback = gr.Button("Submit Feedback")
feedback_result = gr.Markdown("")
with gr.Accordion("Usage Statistics", open=False):
stats_md = gr.JSON(get_stats, every=10)
refresh_stats = gr.Button("Refresh")
# Examples section with caching
gr.Examples(
examples=examples,
inputs=[prompt_input, max_length, temperature, top_p, top_k, num_beams, repetition_penalty],
outputs=[output_text, generation_info],
fn=generate_text,
cache_examples=True
)
# Button actions
submit_btn.click(
generate_text,
inputs=[prompt_input, max_length, temperature, top_p, top_k, num_beams, repetition_penalty],
outputs=[output_text, generation_info]
)
clear_btn.click(
lambda: ("", ""),
inputs=None,
outputs=[prompt_input, output_text]
)
reset_btn.click(
reset_params,
inputs=None,
outputs=[max_length, temperature, top_p, top_k, num_beams, repetition_penalty]
)
# Feedback system
thumbs_up.click(
thumbs_up_callback,
inputs=[prompt_input, output_text],
outputs=[feedback_result]
)
thumbs_down.click(
thumbs_down_callback,
inputs=[prompt_input, output_text],
outputs=[feedback_result]
)
submit_feedback.click(
thumbs_down_callback,
inputs=[prompt_input, output_text, feedback_text],
outputs=[feedback_result]
)
# Stats refresh
refresh_stats.click(
get_stats,
inputs=None,
outputs=[stats_md]
)
# Keyboard shortcuts
prompt_input.submit(
generate_text,
inputs=[prompt_input, max_length, temperature, top_p, top_k, num_beams, repetition_penalty],
outputs=[output_text, generation_info]
)
logger.info("Launching Gradio interface")
app.launch()
logger.info("Gradio interface closed") |