Spaces:
Running
Running
import os | |
import gdown | |
import torch | |
from networks import U2NET | |
from utils.saving_utils import save_checkpoint | |
os.makedirs("prev_checkpoints", exist_ok=True) | |
gdown.download( | |
"https://drive.google.com/uc?id=1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ", | |
"./prev_checkpoints/u2net.pth", | |
quiet=False, | |
) | |
u_net = U2NET(in_ch=3, out_ch=4) | |
save_checkpoint(u_net, os.path.join("prev_checkpoints", "u2net_random.pth")) | |
# u2net.pth contains trained weights | |
trained_net_pth = os.path.join("prev_checkpoints", "u2net.pth") | |
# u2net_random.pth contains random weights | |
custom_net_pth = os.path.join("prev_checkpoints", "u2net_random.pth") | |
net_state_dict = torch.load(trained_net_pth) | |
count = 0 | |
for k, v in net_state_dict.items(): | |
count += 1 | |
print("Total number of layers in trained model are: {}".format(count)) | |
custom_state_dict = torch.load(custom_net_pth) | |
count = 0 | |
for k, v in custom_state_dict.items(): | |
count += 1 | |
print("Total number of layers in trained model are: {}".format(count)) | |
total_count = 0 | |
update_count = 0 | |
for k, v in net_state_dict.items(): | |
total_count += 1 | |
if custom_state_dict[k].shape == v.shape: | |
update_count += 1 | |
custom_state_dict[k] = v | |
print( | |
"Out of {} layers in custom network, {} layers weights are recovered from trained model".format( | |
total_count, update_count | |
) | |
) | |
torch.save( | |
custom_state_dict, os.path.join("prev_checkpoints", "cloth_segm_unet_surgery.pth") | |
) | |
print("cloth_segm_unet_surgery.pth is generated in prev_checkpoints directory!") |