Spaces:
Sleeping
Sleeping
File size: 4,954 Bytes
202eff6 e8983fc 6ba63c9 e8983fc 6ba63c9 6bd0d8c 287d863 f50a656 287d863 f50a656 287d863 6ba63c9 7320170 4e4c0a1 7320170 4e4c0a1 7320170 fbf538f e8983fc fbf538f e8983fc fbf538f e8983fc fbf538f f50a656 fbf538f e8983fc fbf538f 699e2ed fbf538f e8983fc f50a656 e8983fc 699e2ed fbf538f e8983fc f50a656 fbf538f e8983fc fa26a4b 6ba63c9 287d863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from pathlib import Path
from typing import Dict, List
from inference_utils.target_dist import modality_targets_from_target_dist
# If True, then mock init_model() and predict() functions will be used.
DEV_MODE = True if os.getenv("DEV_MODE") else False
import gradio as gr
if DEV_MODE:
from inference_utils.model_mock import Model
else:
from inference_utils.model import Model
gr.set_static_paths(["assets"])
description = """Upload a biomedical image and enter prompts (separated by commas) to detect specific features.
The model understands these prompts:

Above figure is from the [BiomedParse paper](https://arxiv.org/abs/2405.12971).
The model understands these types of biomedical images:
- [Computed Tomography (CT)](https://en.wikipedia.org/wiki/Computed_tomography)
- [Magnetic Resonance Imaging (MRI)](https://en.wikipedia.org/wiki/Magnetic_resonance_imaging)
- [X-ray](https://en.wikipedia.org/wiki/X-ray)
- [Medical Ultrasound](https://en.wikipedia.org/wiki/Medical_ultrasound)
- [Pathology](https://en.wikipedia.org/wiki/Pathology)
- [Fundus (eye)](https://en.wikipedia.org/wiki/Fundus_(eye))
- [Dermoscopy](https://en.wikipedia.org/wiki/Dermoscopy)
- [Endoscopy](https://en.wikipedia.org/wiki/Endoscopy)
- [Optical Coherence Tomography (OCT)](https://en.wikipedia.org/wiki/Optical_coherence_tomography)
This Space is based on the [BiomedParse model](https://microsoft.github.io/BiomedParse/).
"""
examples = [
["examples/144DME_as_F.jpeg", "OCT", []],
["examples/C3_EndoCV2021_00462.jpg", "Endoscopy", []],
["examples/CT-abdomen.png", "CT-Abdomen", []],
["examples/covid_1585.png", "X-Ray-Chest", []],
["examples/ISIC_0015551.jpg", "Dermoscopy", []],
[
"examples/LIDC-IDRI-0140_143_280_CT_lung.png",
"CT-Chest",
[],
],
[
"examples/Part_1_516_pathology_breast.png",
"Pathology",
[],
],
["examples/T0011.jpg", "Fundus", []],
[
"examples/TCGA_HT_7856_19950831_8_MRI-FLAIR_brain.png",
"MRI-FLAIR-Brain",
[],
],
]
def load_modality_targets() -> Dict[str, List[str]]:
target_dist_json_path = Path("inference_utils/target_dist.json")
with open(target_dist_json_path, "r") as f:
target_dist = json.load(f)
modality_targets = modality_targets_from_target_dist(target_dist)
return modality_targets
MODALITY_TARGETS = load_modality_targets()
DEFAULT_MODALITY = "CT-Abdomen"
def run():
model = Model()
model.init()
with gr.Blocks() as demo:
gr.Markdown("# BiomedParse Demo")
gr.Markdown(description)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
input_modality_type = gr.Dropdown(
choices=list(MODALITY_TARGETS.keys()),
label="Modality Type",
value=DEFAULT_MODALITY,
)
input_targets = gr.CheckboxGroup(
choices=MODALITY_TARGETS[DEFAULT_MODALITY],
label="Targets",
)
with gr.Column():
output_image = gr.Image(type="pil", label="Prediction")
output_targets_not_found = gr.Textbox(
label="Targets Not Found", lines=4, max_lines=10
)
input_modality_type.change(
fn=update_input_targets,
inputs=input_modality_type,
outputs=input_targets,
)
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=model.predict,
inputs=[input_image, input_modality_type, input_targets],
outputs=[output_image, output_targets_not_found],
)
gr.Examples(
examples=examples,
inputs=[input_image, input_modality_type, input_targets],
outputs=[output_image, output_targets_not_found],
fn=model.predict,
cache_examples=False,
)
return demo
def update_input_targets(input_modality_type):
return gr.CheckboxGroup(
choices=MODALITY_TARGETS[input_modality_type],
value=[],
label="Targets",
)
demo = run()
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
|