Spaces:
Runtime error
Runtime error
File size: 11,730 Bytes
7c7d36b c881d34 23255b8 c881d34 9183e0b 46605b1 9183e0b e8629da f599270 e8629da 3c318e6 e8629da 2ba4f9b e8629da 3c318e6 e8629da 9183e0b 7c7d36b f599270 7c7d36b f599270 180a8a2 7c7d36b e73fe73 7c7d36b 3c318e6 7c7d36b e73fe73 7c7d36b c881d34 7c7d36b 9183e0b c881d34 95e550e c881d34 9183e0b c881d34 7c7d36b 878ce2b ef0f098 878ce2b 7c7d36b 878ce2b 7c7d36b 878ce2b d410e1c c881d34 e8629da d410e1c 7c7d36b e8629da 7c7d36b e8629da c881d34 7c7d36b ef0f098 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import gradio as gr
import pandas as pd
from Bio import Entrez
import requests
import os
HF_API = os.getenv('HF_API')
openai_api_key = os.getenv('OPENAI_API')
PASSWORD = os.getenv('password')
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
if False:
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto",trust_remote_code=True).eval()
def generate_summary(prompt):
# Add instructions to the prompt to signal that you want a summary
instructions = "Summarize the following text:"
prompt_with_instructions = f"{instructions}\n{prompt}"
# Tokenize the prompt text and return PyTorch tensors
inputs = tokenizer.encode(prompt_with_instructions, return_tensors="pt")
# Generate a response using the model
outputs = model.generate(inputs, max_length=512, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
# Decode the response
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
def generate_response(prompt):
# Tokenize the prompt text and return PyTorch tensors
inputs = tokenizer.encode(prompt, return_tensors="pt")
# Generate a response using the model
outputs = model.generate(inputs, max_length=512, num_return_sequences=1)
# Decode the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def search_pubmed_v2(query, retmax=5, mindate=None, maxdate=None, datetype="pdat"):
Entrez.email = '[email protected]' # Always set the Entrez.email to tell NCBI who you are
search_kwargs = {
"db": "pubmed",
"term": query,
"retmax": retmax,
"sort": 'relevance',
"datetype": datetype
}
# If dates are provided, add them to the search arguments
if mindate:
search_kwargs["mindate"] = mindate
if maxdate:
search_kwargs["maxdate"] = maxdate
handle = Entrez.esearch(**search_kwargs)
record = Entrez.read(handle)
handle.close()
idlist = record['IdList']
handle = Entrez.efetch(db="pubmed", id=idlist, retmode="xml")
articles = Entrez.read(handle)['PubmedArticle']
handle.close()
# ... (the rest of your existing code to extract article information)
abstracts = []
for article in articles:
article_id = article['MedlineCitation']['PMID']
authors = ' '.join([author['LastName'] + ' ' + author.get('Initials', '')
for author in article['MedlineCitation']['Article'].get('AuthorList', [])]),
article_title = article['MedlineCitation']['Article']['ArticleTitle']
abstract_text = article['MedlineCitation']['Article'].get('Abstract', {}).get('AbstractText', [])
if isinstance(abstract_text, list):
# Join the list elements if abstract is a list
abstract_text = " ".join(abstract_text)
abstracts.append((article_id, authors, article_title, abstract_text))
return pd.DataFrame(abstracts)
# Function to search PubMed for articles
def search_pubmed(query, retmax=5, mindate=None, maxdate=None, datetype="pdat"):
Entrez.email = '[email protected]'
search_kwargs = {
"db": "pubmed",
"term": query,
"retmax": retmax,
"sort": 'relevance',
"datetype": datetype
}
# If dates are provided, add them to the search arguments
if mindate:
search_kwargs["mindate"] = mindate
if maxdate:
search_kwargs["maxdate"] = maxdate
handle = Entrez.esearch(**search_kwargs)
record = Entrez.read(handle)
handle.close()
idlist = record['IdList']
handle = Entrez.efetch(db="pubmed", id=idlist, retmode="xml")
articles = Entrez.read(handle)['PubmedArticle']
handle.close()
article_list = []
for article in articles:
abstract_text = article['MedlineCitation']['Article'].get('Abstract', {}).get('AbstractText', [])
if isinstance(abstract_text, list):
# Join the list elements if abstract is a list
abstract_text = " ".join(abstract_text)
article_dict = {
'PMID': str(article['MedlineCitation']['PMID']),
'Authors': ' '.join([author['LastName'] + ' ' + author.get('Initials', '')
for author in article['MedlineCitation']['Article'].get('AuthorList', [])]),
'Title': article['MedlineCitation']['Article']['ArticleTitle'],
'Abstract': abstract_text,
}
article_list.append(article_dict)
return pd.DataFrame(article_list)
# Function to format search results for OpenAI summarization
def format_results_for_openai(table_data):
# Combine title and abstract for each record into one string for summarization
summaries = []
for _, row in table_data.iterrows():
summary = f"Title: {row['Title']}\nAuthors:{row['Authors']}\nAbstract: {row['Abstract']}\n"
summaries.append(summary)
print(summaries)
return "\n".join(summaries)
def get_summary_from_openai(text_to_summarize, openai_api_key):
headers = {
'Authorization': f'Bearer {openai_api_key}',
'Content-Type': 'application/json'
}
data = {
"model": "gpt-3.5-turbo", # Specify the GPT-3.5-turbo model
"messages": [{"role": "system", "content": '''Please summarize the following PubMed search results,
including the authors who conducted the research, the main research subject, and the major findings.
Please compare the difference among these articles.
Please return your results in a single paragraph in the regular scientific paper fashion for each article:'''},
{"role": "user", "content": text_to_summarize}],
}
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
summary = response.json().get('choices', [{}])[0].get('message', {'content':''}).get('content', '').strip()
return summary
else:
# Print the error message if the API call was unsuccessful
print(f"Error: {response.status_code}")
print(response.text)
return None
# Function that combines PubMed search with OpenAI summarization
def summarize_pubmed_search(search_results):
formatted_text = format_results_for_openai(search_results)
summary = get_summary_from_openai(formatted_text, openai_api_key) # Replace with your actual OpenAI API key
return summary
# Function to summarize articles using Hugging Face's API
def summarize_with_huggingface(model, selected_articles, password):
if password == PASSWORD:
summary = summarize_pubmed_search(selected_articles)
return summary
else:
API_URL = f"https://api-inference.huggingface.co/models/{model}"
# Your Hugging Face API key
API_KEY = HF_API
headers = {"Authorization": f"Bearer {API_KEY}"}
# Prepare the text to summarize: concatenate all abstracts
print(type(selected_articles))
print(selected_articles.to_dict(orient='records'))
text_to_summarize = " ".join(
[f"PMID: {article['PMID']}. Authors: {article['Authors']}. Title: {article['Title']}. Abstract: {article['Abstract']}."
for article in selected_articles.to_dict(orient='records')]
)
# Define the payload
payload = {
"inputs": text_to_summarize,
"parameters": {"max_length": 300} # Adjust as needed
}
USE_LOCAL=False
if USE_LOCAL:
response = generate_response(text_to_summarize)
else:
# Make the POST request to the Hugging Face API
response = requests.post(API_URL, headers=headers, json=payload)
response.raise_for_status() # Raise an HTTPError if the HTTP request returned an unsuccessful status code
# The API returns a list of dictionaries. We extract the summary from the first one.
return response.json()[0]['generated_text']
import gradio as gr
from Bio import Entrez
# Always tell NCBI who you are
Entrez.email = "[email protected]"
def process_query(keywords, top_k):
articles = search_pubmed(keywords, top_k)
# Convert each article from a dictionary to a list of values in the correct order
articles_for_display = [[article['pmid'], article['authors'], article['title'], article['abstract']] for article in articles]
return articles_for_display
def summarize_articles(indices, articles_for_display):
# Convert indices to a list of integers
selected_indices = [int(index.strip()) for index in indices.split(',') if index.strip().isdigit()]
# Convert the DataFrame to a list of dictionaries
articles_list = articles_for_display.to_dict(orient='records')
# Select articles based on the provided indices
selected_articles = [articles_list[index] for index in selected_indices]
# Generate the summary
summary = summarize_with_huggingface(selected_articles)
return summary
def check_password(username, password):
if username == USERNAME and password == PASSWORD:
return True, "Welcome!"
else:
return False, "Incorrect username or password."
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("### PubMed Article Summarizer")
with gr.Row():
password_input = gr.Textbox(label="Enter the password")
model_input = gr.Textbox(label="Enter the model to use", value="h2oai/h2ogpt-4096-llama2-7b-chat")
with gr.Row():
startdate = gr.Textbox(label="Starting year")
enddate = gr.Textbox(label="End year")
query_input = gr.Textbox(label="Query Keywords")
retmax_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of articles")
search_button = gr.Button("Search")
output_table = gr.Dataframe(headers=["PMID", "Authors", "Title","Abstract" ])
summarize_button = gr.Button("Summarize")
summary_output = gr.Textbox()
def update_output_table(query, retmax, startdate, enddate):
df = search_pubmed(query, retmax, startdate, enddate)
# output_table.update(value=df)
return df
search_button.click(update_output_table, inputs=[query_input, retmax_input, startdate, enddate], outputs=output_table)
summarize_button.click(fn=summarize_with_huggingface, inputs=[model_input, output_table, password_input], outputs=summary_output)
demo.launch(debug=True)
if False:
with gr.Blocks() as demo:
gr.Markdown("### PubMed Article Summarizer")
with gr.Row():
query_input = gr.Textbox(label="Query Keywords")
top_k_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Top K Results")
search_button = gr.Button("Search")
output_table = gr.Dataframe(headers=["Title", "Authors", "Abstract", "PMID"])
indices_input = gr.Textbox(label="Enter indices of articles to summarize (comma-separated)")
summarize_button = gr.Button("Summarize Selected Articles")
summary_output = gr.Textbox(label="Summary")
search_button.click(
fn=process_query,
inputs=[query_input, top_k_input],
outputs=output_table
)
summarize_button.click(
fn=summarize_articles,
inputs=[indices_input, output_table],
outputs=summary_output
)
demo.launch(auth=("user", "pass1234"), debug=True) |