StefanoBergia's picture
fix cuda check
368f089
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Enhanced Single-View Gradio App for Semantic Segmentation, Depth Estimation, and 3D Point Cloud
Processes one image and shows all outputs: segmentation, depth, and colored point cloud
Now with precomputed examples for demonstration
"""
import sys
import locale
import os
import datetime
from pathlib import Path
# Set UTF-8 encoding
if sys.version_info >= (3, 7):
sys.stdout.reconfigure(encoding='utf-8')
sys.stderr.reconfigure(encoding='utf-8')
# Set locale for proper Unicode support
try:
locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')
except locale.Error:
try:
locale.setlocale(locale.LC_ALL, 'C.UTF-8')
except locale.Error:
pass # Use system default
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import io
import base64
from dataclasses import dataclass
from typing import Optional, List, Tuple, Dict, Any
import requests
import cv2
from abc import ABC, abstractmethod
from collections import namedtuple
import plotly.graph_objects as go
import plotly.io as pio
import open3d as o3d
import json
import subprocess
# Import DepthAnythingV2 (assuming it's in the same directory or installed)
try:
from metric_depth.depth_anything_v2.dpt import DepthAnythingV2
DEPTH_AVAILABLE = True
except ImportError:
print("DepthAnythingV2 not available. Using precomputed examples only.")
DEPTH_AVAILABLE = False
CUDA_AVAILABLE = torch.cuda.is_available()
# Set environment variable to disable xFormers
os.environ['XFORMERS_DISABLED'] = '1'
os.environ['XFORMERS_MORE_DETAILS'] = '1'
# Output directory structure (mounted volume)
OUTPUT_DIR = Path("outputs")
def fix_lfs_on_startup():
"""Quick fix for LFS issues on HuggingFace startup."""
print("Checking for LFS issues...")
try:
# Try to pull LFS files
result = subprocess.run(['git', 'lfs', 'pull'],
capture_output=True, text=True, timeout=30)
if result.returncode == 0:
print("LFS files pulled successfully")
else:
print(f"LFS pull failed: {result.stderr}")
# Try checkout instead
subprocess.run(['git', 'lfs', 'checkout'],
capture_output=True, timeout=20)
except Exception as e:
print(f"LFS operations failed: {e}")
# =============================================================================
# Model Base Classes and Configurations
# =============================================================================
@dataclass
class ModelConfig:
"""Configuration for segmentation models."""
model_name: str
processor_name: str
device: str = "cuda" if torch.cuda.is_available() else "cpu"
trust_remote_code: bool = True
task_type: str = "semantic"
@dataclass
class DepthConfig:
"""Configuration for depth estimation models."""
encoder: str = "vitl" # 'vits', 'vitb', 'vitl'
dataset: str = "vkitti" # 'hypersim' for indoor, 'vkitti' for outdoor
max_depth: int = 80 # 20 for indoor, 80 for outdoor
weights_path: str = "depth_anything_v2_metric_vkitti_vitl.pth"
device: str = "cuda" if torch.cuda.is_available() else "cpu"
class BaseSegmentationModel(ABC):
"""Abstract base class for segmentation models."""
def __init__(self, model_config):
self.config = model_config
self.model = None
self.processor = None
self.device = torch.device(model_config.device if torch.cuda.is_available() else "cpu")
@abstractmethod
def load_model(self):
"""Load the model and processor."""
pass
@abstractmethod
def preprocess(self, image: Image.Image, **kwargs) -> Dict[str, torch.Tensor]:
"""Preprocess the input image."""
pass
@abstractmethod
def predict(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Run inference on preprocessed inputs."""
pass
@abstractmethod
def postprocess(self, outputs: Dict[str, torch.Tensor], target_size: Tuple[int, int]) -> np.ndarray:
"""Postprocess model outputs to segmentation map."""
pass
def segment_image(self, image: Image.Image, **kwargs) -> np.ndarray:
"""End-to-end segmentation pipeline."""
if self.model is None:
self.load_model()
inputs = self.preprocess(image, **kwargs)
outputs = self.predict(inputs)
segmentation_map = self.postprocess(outputs, image.size[::-1])
return segmentation_map
# =============================================================================
# OneFormer Model Implementation
# =============================================================================
class OneFormerModel(BaseSegmentationModel):
"""OneFormer model for universal segmentation."""
def __init__(self, model_config):
super().__init__(model_config)
def load_model(self):
"""Load OneFormer model and processor."""
print(f"Loading OneFormer model: {self.config.model_name}")
try:
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
self.processor = OneFormerProcessor.from_pretrained(
self.config.processor_name,
trust_remote_code=self.config.trust_remote_code
)
self.model = OneFormerForUniversalSegmentation.from_pretrained(
self.config.model_name,
trust_remote_code=self.config.trust_remote_code
)
self.model.to(self.device)
self.model.eval()
print(f"OneFormer model loaded successfully on {self.device}")
except Exception as e:
print(f"Error loading OneFormer model: {e}")
raise
def preprocess(self, image: Image.Image, task_inputs: List[str] = None) -> Dict[str, torch.Tensor]:
"""Preprocess image for OneFormer."""
if task_inputs is None:
task_inputs = [self.config.task_type]
inputs = self.processor(
images=image,
task_inputs=task_inputs,
return_tensors="pt"
)
# Move inputs to device
inputs = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v
for k, v in inputs.items()}
return inputs
def predict(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Run inference with OneFormer."""
with torch.no_grad():
outputs = self.model(**inputs)
return outputs
def postprocess(self, outputs: Dict[str, torch.Tensor], target_size: Tuple[int, int]) -> np.ndarray:
"""Postprocess OneFormer outputs."""
predicted_semantic_map = self.processor.post_process_semantic_segmentation(
outputs,
target_sizes=[target_size]
)[0]
return predicted_semantic_map.cpu().numpy()
# =============================================================================
# DepthAnythingV2 Model Implementation
# =============================================================================
class DepthAnythingV2Model:
"""DepthAnythingV2 model for depth estimation."""
def __init__(self, depth_config: DepthConfig):
self.config = depth_config
self.model = None
self.device = torch.device(depth_config.device if torch.cuda.is_available() else "cpu")
def load_model(self):
"""Load DepthAnythingV2 model."""
if not DEPTH_AVAILABLE:
raise ImportError("DepthAnythingV2 is not available")
print(f"Loading DepthAnythingV2 model: {self.config.encoder}")
try:
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}
}
self.model = DepthAnythingV2(**{**model_configs[self.config.encoder], 'max_depth': self.config.max_depth})
# Load weights
if os.path.exists(self.config.weights_path):
self.model.load_state_dict(torch.load(self.config.weights_path, map_location='cpu'))
print(f"Loaded weights from {self.config.weights_path}")
else:
print(f"Warning: Weights file {self.config.weights_path} not found")
self.model.to(self.device)
self.model.eval()
print(f"DepthAnythingV2 model loaded successfully on {self.device}")
except Exception as e:
print(f"Error loading DepthAnythingV2 model: {e}")
raise
def estimate_depth(self, image: Image.Image) -> np.ndarray:
"""Estimate depth from image."""
if self.model is None:
self.load_model()
# Convert PIL to OpenCV format
img_array = np.array(image)
if len(img_array.shape) == 3:
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
# Infer depth
depth_map = self.model.infer_image(img_array)
return depth_map
# =============================================================================
# Cityscapes Label Definitions
# =============================================================================
Label = namedtuple('Label', [
'name', 'id', 'trainId', 'category', 'categoryId',
'hasInstances', 'ignoreInEval', 'color'
])
labels = [
Label('unlabeled', 0, 255, 'void', 0, False, True, (0, 0, 0)),
Label('ego vehicle', 1, 255, 'void', 0, False, True, (0, 0, 0)),
Label('rectification border', 2, 255, 'void', 0, False, True, (0, 0, 0)),
Label('out of roi', 3, 255, 'void', 0, False, True, (0, 0, 0)),
Label('static', 4, 255, 'void', 0, False, True, (0, 0, 0)),
Label('dynamic', 5, 255, 'void', 0, False, True, (111, 74, 0)),
Label('ground', 6, 255, 'void', 0, False, True, (81, 0, 81)),
Label('road', 7, 0, 'flat', 1, False, False, (128, 64,128)),
Label('sidewalk', 8, 1, 'flat', 1, False, False, (244, 35,232)),
Label('parking', 9, 255, 'flat', 1, False, True, (250,170,160)),
Label('rail track', 10, 255, 'flat', 1, False, True, (230,150,140)),
Label('building', 11, 2, 'construction', 2, False, False, (70, 70, 70)),
Label('wall', 12, 3, 'construction', 2, False, False, (102,102,156)),
Label('fence', 13, 4, 'construction', 2, False, False, (190,153,153)),
Label('guard rail', 14, 255, 'construction', 2, False, True, (180,165,180)),
Label('bridge', 15, 255, 'construction', 2, False, True, (150,100,100)),
Label('tunnel', 16, 255, 'construction', 2, False, True, (150,120, 90)),
Label('pole', 17, 5, 'object', 3, False, False, (153,153,153)),
Label('polegroup', 18, 255, 'object', 3, False, True, (153,153,153)),
Label('traffic light', 19, 6, 'object', 3, False, False, (250,170, 30)),
Label('traffic sign', 20, 7, 'object', 3, False, False, (220,220, 0)),
Label('vegetation', 21, 8, 'nature', 4, False, False, (107,142, 35)),
Label('terrain', 22, 9, 'nature', 4, False, False, (152,251,152)),
Label('sky', 23, 10, 'sky', 5, False, False, (70,130,180)),
Label('person', 24, 11, 'human', 6, True, False, (220, 20, 60)),
Label('rider', 25, 12, 'human', 6, True, False, (255, 0, 0)),
Label('car', 26, 13, 'vehicle', 7, True, False, (0, 0,142)),
Label('truck', 27, 14, 'vehicle', 7, True, False, (0, 0, 70)),
Label('bus', 28, 15, 'vehicle', 7, True, False, (0, 60,100)),
Label('caravan', 29, 255, 'vehicle', 7, True, True, (0, 0, 90)),
Label('trailer', 30, 255, 'vehicle', 7, True, True, (0, 0,110)),
Label('train', 31, 16, 'vehicle', 7, True, False, (0, 80,100)),
Label('motorcycle', 32, 17, 'vehicle', 7, True, False, (0, 0,230)),
Label('bicycle', 33, 18, 'vehicle', 7, True, False, (119, 11, 32)),
Label('license plate', -1, -1, 'vehicle', 7, False, True, (0, 0,142)),
]
# Sky trainId is 10
SKY_TRAIN_ID = 10
# =============================================================================
# Utility Functions
# =============================================================================
def get_color_map(labels):
"""Returns a color map dictionary for the given labels."""
color_map = {label.trainId: label.color for label in labels if label.trainId != 255}
return color_map
def apply_color_map(semantic_map, color_map):
"""Applies a color map to a semantic map."""
height, width = semantic_map.shape
color_mapped_image = np.zeros((height, width, 3), dtype=np.uint8)
for trainId, color in color_map.items():
mask = semantic_map == trainId
color_mapped_image[mask] = color
return color_mapped_image
def create_depth_visualization(depth_map: np.ndarray, colormap: str = 'magma') -> Image.Image:
"""Create a colored depth map visualization with exact dimensions."""
# Normalize depth map to [0, 1]
normalized_depth = depth_map / np.max(depth_map)
# Apply colormap
cmap = plt.get_cmap(colormap)
colored_depth = cmap(normalized_depth)
# Convert to 8-bit RGB (remove alpha channel)
colored_depth_8bit = (colored_depth[:, :, :3] * 255).astype(np.uint8)
return Image.fromarray(colored_depth_8bit)
def depth_to_point_cloud_with_segmentation(depth_map: np.ndarray, rgb_image: Image.Image,
semantic_map: np.ndarray,
fx: float = 525.0, fy: float = 525.0,
cx: float = None, cy: float = None) -> o3d.geometry.PointCloud:
"""Convert depth map and RGB image to 3D point cloud with segmentation colors, excluding sky."""
height, width = depth_map.shape
if cx is None:
cx = width / 2.0
if cy is None:
cy = height / 2.0
# Create coordinate matrices
u, v = np.meshgrid(np.arange(width), np.arange(height))
# Convert to 3D coordinates
z = depth_map
x = (u - cx) * z / fx
y = (v - cy) * z / fy
# Stack coordinates
points = np.stack([x, y, z], axis=-1).reshape(-1, 3)
# Create mask to exclude sky points and invalid depths
flat_semantic = semantic_map.flatten()
flat_depth = z.flatten()
# Filter out invalid points and sky points
valid_mask = (flat_depth > 0) & (flat_depth < 1000) & (flat_semantic != SKY_TRAIN_ID)
points = points[valid_mask]
# Get segmentation colors for each point
color_map = get_color_map(labels)
seg_colors = np.zeros((len(flat_semantic), 3))
for trainId, color in color_map.items():
mask = flat_semantic == trainId
seg_colors[mask] = color
# Filter colors to match valid points
colors = seg_colors[valid_mask] / 255.0 # Normalize to [0, 1]
# Create Open3D point cloud
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors)
return pcd
def create_plotly_pointcloud(pcd: o3d.geometry.PointCloud, downsample_factor: float = 0.1) -> go.Figure:
"""Create interactive Plotly 3D point cloud visualization."""
# Downsample for performance
if downsample_factor < 1.0:
num_points = len(pcd.points)
indices = np.random.choice(num_points, int(num_points * downsample_factor), replace=False)
points = np.asarray(pcd.points)[indices]
colors = np.asarray(pcd.colors)[indices]
else:
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
# Create 3D scatter plot
fig = go.Figure(data=[go.Scatter3d(
x=points[:, 0],
y=points[:, 1],
z=points[:, 2],
mode='markers',
marker=dict(
size=1,
color=colors,
opacity=0.8
),
text=[f'Point {i}' for i in range(len(points))],
hovertemplate='X: %{x:.2f}<br>Y: %{y:.2f}<br>Z: %{z:.2f}<extra></extra>'
)])
# Update layout for centered display
fig.update_layout(
scene=dict(
xaxis_title='X (Horizontal)',
yaxis_title='Y (Vertical)',
zaxis_title='Z (Depth)',
aspectmode='data'
),
title={
'text': 'Interactive 3D Point Cloud (Colored by Segmentation, Sky Excluded)',
'x': 0.5,
'xanchor': 'center'
},
width=None, # Let it auto-size to container
height=600,
margin=dict(l=0, r=0, t=40, b=0), # Minimal margins
autosize=True # Enable auto-sizing to container
)
# Set camera for bird's eye view that clearly shows 3D structure
fig.update_layout(scene_camera=dict(
up=dict(x=0, y=0, z=1), # Z-axis points up
center=dict(x=0, y=0, z=0), # Center at origin
eye=dict(x=0.5, y=-2.5, z=1.5) # View from above-back position
))
return fig
def create_overlay_plot(rgb_image: Image.Image, semantic_map: np.ndarray, alpha: float = 0.5):
"""Create segmentation overlay plot without title and borders."""
rgb_array = np.array(rgb_image)
color_map = get_color_map(labels)
colored_semantic_map = apply_color_map(semantic_map, color_map)
# Create figure with exact image dimensions
height, width = rgb_array.shape[:2]
dpi = 100
fig, ax = plt.subplots(1, 1, figsize=(width/dpi, height/dpi), dpi=dpi)
# Remove all margins and padding
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
ax.imshow(rgb_array)
ax.imshow(colored_semantic_map, alpha=alpha)
ax.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=dpi)
buf.seek(0)
plt.close(fig)
return Image.open(buf)
class PrecomputedExamplesManager:
"""Manages precomputed examples from output folder structure."""
def __init__(self, output_dir: Path):
self.output_dir = output_dir
self.rgb_dir = output_dir / "rgb"
self.segmentation_dir = output_dir / "segmentation"
self.depth_dir = output_dir / "depth"
self.pointclouds_dir = output_dir / "pointclouds"
self.examples = self._load_examples()
def _load_examples(self) -> Dict[str, Dict]:
"""Load all available precomputed examples from output structure."""
examples = {}
if not self.output_dir.exists():
print(f"Output directory {self.output_dir} not found.")
return {}
# Find all timestamps by looking at RGB files (the inputs)
if not self.rgb_dir.exists():
print(f"RGB directory {self.rgb_dir} not found.")
return {}
# Get all RGB files and extract timestamps
timestamps = set()
for rgb_file in self.rgb_dir.glob("rgb_*.png"):
# Extract timestamp from filename like "rgb_20241215_143022.png"
filename = rgb_file.stem
if filename.startswith("rgb_"):
timestamp = filename.replace("rgb_", "")
timestamps.add(timestamp)
print(f"Found {len(timestamps)} RGB input images")
# For each timestamp, try to load the complete example
for timestamp in sorted(timestamps, reverse=True): # Most recent first
example_data = self._load_single_example(timestamp)
if example_data:
examples[timestamp] = example_data
print(f"Loaded {len(examples)} precomputed examples from output directory")
return examples
def _load_single_example(self, timestamp: str) -> Optional[Dict]:
"""Load a single precomputed example by timestamp."""
try:
# Input file (required)
rgb_path = self.rgb_dir / f"rgb_{timestamp}.png"
# Output files (some may be optional)
seg_path = self.segmentation_dir / f"segmentation_{timestamp}.png"
depth_path = self.depth_dir / f"depth_{timestamp}.png"
ply_path = self.pointclouds_dir / f"pointcloud_{timestamp}.ply"
html_path = self.pointclouds_dir / f"pointcloud_{timestamp}.html"
# Check if RGB input exists (required)
if not rgb_path.exists():
print(f"RGB input file missing for timestamp {timestamp}: {rgb_path}")
return None
# Check if at least segmentation output exists
if not seg_path.exists():
print(f"Segmentation output missing for timestamp {timestamp}: {seg_path}")
return None
# Create a display name from timestamp
try:
# Parse timestamp like "20241215_143022"
if len(timestamp) >= 13 and "_" in timestamp:
date_part = timestamp[:8]
time_part = timestamp[9:15]
# Format as "Dec 15, 2024 14:30"
year = date_part[:4]
month = date_part[4:6]
day = date_part[6:8]
hour = time_part[:2]
minute = time_part[2:4]
month_names = ["", "Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
month_name = month_names[int(month)] if 1 <= int(month) <= 12 else month
display_name = f"{month_name} {int(day)}, {year} {hour}:{minute}"
else:
display_name = timestamp
except:
display_name = timestamp
return {
'name': display_name,
'timestamp': timestamp,
'rgb_path': rgb_path, # Input image
'segmentation_path': seg_path, # Output
'depth_path': depth_path if depth_path.exists() else None, # Output (optional)
'pointcloud_ply_path': ply_path if ply_path.exists() else None, # Output (optional)
'pointcloud_html_path': html_path if html_path.exists() else None, # Output (optional)
'preview_image': self._create_preview_image(rgb_path, timestamp)
}
except Exception as e:
print(f"Error loading example {timestamp}: {e}")
return None
def _create_preview_image(self, rgb_path: Path, timestamp: str) -> Image.Image:
"""Create a preview thumbnail from RGB input image."""
try:
image = Image.open(rgb_path)
image.thumbnail((600, 450), Image.Resampling.LANCZOS)
return image
except Exception as e:
print(f"Error creating preview for {timestamp}: {e}")
return Image.new('RGB', (200, 150), color=(128, 128, 128))
def get_example_names(self) -> List[str]:
"""Get list of available example names."""
return [data['name'] for data in self.examples.values()]
def get_example_previews(self) -> List[Tuple[Image.Image, str]]:
"""Get preview images for all examples."""
previews = []
for timestamp, data in self.examples.items():
previews.append((data['preview_image'], data['name']))
return previews
def get_timestamp_by_name(self, name: str) -> Optional[str]:
"""Get timestamp by display name."""
for timestamp, data in self.examples.items():
if data['name'] == name:
return timestamp
return None
def load_example_results(self, example_name: str) -> Tuple[Optional[Image.Image], Optional[Image.Image], Optional[go.Figure], str]:
"""Load precomputed results for an example."""
if not example_name:
return None, None, None, "Please select an example."
# Find the timestamp for this example name
timestamp = self.get_timestamp_by_name(example_name)
if not timestamp or timestamp not in self.examples:
return None, None, None, f"Example '{example_name}' not found."
example_data = self.examples[timestamp]
try:
# Load output images
segmentation_image = Image.open(example_data['segmentation_path'])
depth_image = None
if example_data['depth_path'] and example_data['depth_path'].exists():
depth_image = Image.open(example_data['depth_path'])
# Load point cloud if available
point_cloud_fig = None
if example_data['pointcloud_ply_path'] and example_data['pointcloud_ply_path'].exists():
try:
pcd = o3d.io.read_point_cloud(str(example_data['pointcloud_ply_path']))
if len(pcd.points) > 0:
point_cloud_fig = create_plotly_pointcloud(pcd, downsample_factor=1)
else:
print(f"Point cloud file {example_data['pointcloud_ply_path']} is empty")
except Exception as e:
print(f"Error loading point cloud: {e}")
return segmentation_image, depth_image, point_cloud_fig, ""
except Exception as e:
return None, None, None, f"Error loading example results: {str(e)}"
# =============================================================================
# Main Application Class
# =============================================================================
class EnhancedSingleViewApp:
def __init__(self):
# Model configurations
self.oneformer_config = ModelConfig(
model_name="shi-labs/oneformer_cityscapes_swin_large",
processor_name="shi-labs/oneformer_cityscapes_swin_large",
task_type="semantic"
)
self.depth_config = DepthConfig(
encoder="vitl",
dataset="vkitti",
max_depth=80,
weights_path="depth_anything_v2_metric_vkitti_vitl.pth"
)
# Models
self.oneformer_model = None
self.depth_model = None
self.segmentation_loaded = False
self.depth_loaded = False
# Precomputed examples manager
self.examples_manager = PrecomputedExamplesManager(OUTPUT_DIR)
# Online sample images (fallback)
self.sample_images = {
"Street Scene 1": "https://images.unsplash.com/photo-1449824913935-59a10b8d2000?w=800",
"Street Scene 2": "https://images.unsplash.com/photo-1502920917128-1aa500764cbd?w=800",
"Urban Road": "https://images.unsplash.com/photo-1516738901171-8eb4fc13bd20?w=800",
"City View": "https://images.unsplash.com/photo-1477959858617-67f85cf4f1df?w=800",
"Highway": "https://images.unsplash.com/photo-1544620347-c4fd4a3d5957?w=800",
}
def download_sample_image(self, image_url: str) -> Image.Image:
"""Download a sample image from URL."""
try:
response = requests.get(image_url, timeout=10)
response.raise_for_status()
return Image.open(io.BytesIO(response.content)).convert('RGB')
except Exception as e:
print(f"Error downloading image: {e}")
return Image.new('RGB', (800, 600), color=(128, 128, 128))
def create_overlay_plot(self, rgb_image: Image.Image, semantic_map: np.ndarray, alpha: float = 0.5):
"""Create segmentation overlay plot without title and borders."""
rgb_array = np.array(rgb_image)
color_map = get_color_map(labels)
colored_semantic_map = apply_color_map(semantic_map, color_map)
# Create figure with exact image dimensions
height, width = rgb_array.shape[:2]
dpi = 100
fig, ax = plt.subplots(1, 1, figsize=(width/dpi, height/dpi), dpi=dpi)
# Remove all margins and padding
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
ax.imshow(rgb_array)
ax.imshow(colored_semantic_map, alpha=alpha)
ax.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=dpi)
buf.seek(0)
plt.close(fig)
return Image.open(buf)
def process_complete_pipeline(self, image: Image.Image):
"""Process image through complete pipeline: segmentation + depth + point cloud."""
if image is None:
return None, None, None, "Please upload an image."
# Default values
overlay_alpha = 0.5
depth_colormap = "magma"
downsample_factor = 0.1
try:
# Auto-load models if not loaded
if not self.segmentation_loaded:
if self.oneformer_model is None:
self.oneformer_model = OneFormerModel(self.oneformer_config)
self.oneformer_model.load_model()
self.segmentation_loaded = True
if not self.depth_loaded and DEPTH_AVAILABLE:
if self.depth_model is None:
self.depth_model = DepthAnythingV2Model(self.depth_config)
self.depth_model.load_model()
self.depth_loaded = True
# Resize if too large
original_size = image.size
if max(image.size) > 1024:
image.thumbnail((1024, 1024), Image.Resampling.LANCZOS)
# Step 1: Semantic Segmentation
task_inputs = ["semantic"]
semantic_map = self.oneformer_model.segment_image(image, task_inputs=task_inputs)
segmentation_overlay = self.create_overlay_plot(image, semantic_map, overlay_alpha)
# Step 2: Depth Estimation (if available)
depth_vis = None
point_cloud_fig = None
pcd = None
if DEPTH_AVAILABLE and self.depth_loaded:
depth_map = self.depth_model.estimate_depth(image)
depth_vis = create_depth_visualization(depth_map, depth_colormap)
# Step 3: Point Cloud with Segmentation Colors
pcd = depth_to_point_cloud_with_segmentation(depth_map, image, semantic_map)
point_cloud_fig = create_plotly_pointcloud(pcd, downsample_factor)
# Generate comprehensive info
unique_classes = np.unique(semantic_map)
class_info = []
total_pixels = semantic_map.size
for class_id in unique_classes:
if class_id < len(labels) and class_id != 255:
label = labels[class_id]
pixel_count = np.sum(semantic_map == class_id)
percentage = (pixel_count / total_pixels) * 100
if percentage > 0.1:
class_info.append(f"- {label.name}: {percentage:.1f}%")
# Point cloud statistics
if point_cloud_fig is not None:
num_points = len(pcd.points)
downsampled_points = int(num_points * downsample_factor)
point_cloud_info = f"""
3D Point Cloud:
- Total points: {num_points:,}
- Displayed points: {downsampled_points:,} ({downsample_factor*100:.0f}%)
- Sky points excluded
- Colors match segmentation classes"""
else:
point_cloud_info = "Point cloud not available (DepthAnythingV2 required)"
# Depth statistics
if depth_vis is not None and DEPTH_AVAILABLE:
depth_stats = {
'min': np.min(depth_map),
'max': np.max(depth_map),
'mean': np.mean(depth_map),
'std': np.std(depth_map)
}
depth_info = f"""
Depth Estimation:
- Min depth: {depth_stats['min']:.2f}m
- Max depth: {depth_stats['max']:.2f}m
- Mean depth: {depth_stats['mean']:.2f}m
- Std deviation: {depth_stats['std']:.2f}m
- Colormap: {depth_colormap}"""
else:
depth_info = "Depth estimation not available"
info_text = f"""Complete vision pipeline processed successfully!
Models Used:
- OneFormer (Semantic Segmentation)
{f"- DepthAnythingV2 ({self.depth_config.encoder.upper()})" if DEPTH_AVAILABLE else "- DepthAnythingV2 (Not Available)"}
Image Processing:
- Original size: {original_size[0]}x{original_size[1]}
- Processed size: {image.size[0]}x{image.size[1]}
- Overlay transparency: {overlay_alpha:.1f}
Detected Classes:
{chr(10).join(class_info)}
{depth_info}
{point_cloud_info}
The point cloud shows 3D structure with each point colored according to its segmentation class. Sky points are excluded for better visualization."""
return segmentation_overlay, depth_vis, point_cloud_fig, info_text
except Exception as e:
return None, None, None, f"Error processing pipeline: {str(e)}"
# Initialize the app
app = EnhancedSingleViewApp()
def process_uploaded_image(image):
try:
return app.process_complete_pipeline(image)
except:
return None, None, None
def process_sample_image(sample_choice):
"""Process sample image through complete pipeline."""
if sample_choice and sample_choice in app.sample_images:
image_url = app.sample_images[sample_choice]
image = app.download_sample_image(image_url)
return app.process_complete_pipeline(image)
return None, None, None, "Please select a sample image."
def load_precomputed_example(evt: gr.SelectData):
"""Load precomputed example results from gallery selection."""
if evt.index is not None:
example_names = app.examples_manager.get_example_names()
if evt.index < len(example_names):
example_name = example_names[evt.index]
seg_image, depth_image, pc_fig, info_text = app.examples_manager.load_example_results(example_name)
return seg_image, depth_image, pc_fig
return None, None, None
def get_example_previews():
"""Get preview images for the gallery."""
previews = app.examples_manager.get_example_previews()
if not previews:
return []
return previews
# =============================================================================
# Create Gradio Interface
# =============================================================================
def create_gradio_interface():
"""Create and return the enhanced single-view Gradio interface."""
with gr.Blocks(
title="Enhanced Computer Vision Pipeline",
theme=gr.themes.Default()
) as demo:
gr.Markdown("""
# Street Scene 3D Reconstruction
Upload an image or select an example to see:
- **Semantic Segmentation** - Identify roads, buildings, vehicles, people, and other scene elements
- **Depth Estimation** - Generate metric depth maps showing distance to objects
- **3D Point Cloud** - Interactive 3D reconstruction with semantic colors)
""")
with gr.Row():
# Left Column: Controls and Input
with gr.Column(scale=1):
if CUDA_AVAILABLE:
gr.Markdown("### Upload Image")
uploaded_image = gr.Image(
type="pil",
label="Upload Image"
)
upload_btn = gr.Button("Process Image", variant="primary", size="lg")
else:
uploaded_image = gr.Image(visible=False) # Hidden placeholder
upload_btn = gr.Button(visible=False) # Hidden placeholder
gr.Markdown("### CPU Mode")
gr.Markdown("⚠️ **Upload disabled**: DepthAnythingV2 requires CUDA. Using precomputed examples only.")
gr.Markdown("### Examples")
gr.Markdown("Click on an image to load the example:")
# Example gallery (always visible)
example_gallery = gr.Gallery(
value=get_example_previews(),
label="Example Images",
show_label=False,
elem_id="example_gallery",
columns=2,
rows=3,
height="auto",
object_fit="cover"
)
# Right Column: Results
with gr.Column(scale=2):
gr.Markdown("### Results")
# Segmentation and Depth side by side
with gr.Row():
with gr.Column():
gr.Markdown("#### Semantic Segmentation")
segmentation_output = gr.Image(label="Segmentation Overlay")
with gr.Column():
gr.Markdown("#### Depth Estimation")
depth_output = gr.Image(label="Depth Map")
# Point Cloud below
gr.Markdown("#### 3D Point Cloud")
pointcloud_output = gr.Plot(label="Interactive 3D Point Cloud (Colored by Segmentation)")
if CUDA_AVAILABLE:
upload_btn.click(
fn=process_uploaded_image,
inputs=[uploaded_image],
outputs=[segmentation_output, depth_output, pointcloud_output]
)
# Gallery selection loads example directly
example_gallery.select(
fn=load_precomputed_example,
outputs=[segmentation_output, depth_output, pointcloud_output]
)
return demo
# =============================================================================
# Main Execution
# =============================================================================
if __name__ == "__main__":
fix_lfs_on_startup()
# Create and launch the interface
demo = create_gradio_interface()
print("Starting Enhanced Single-View Computer Vision App...")
print("Complete Pipeline: Segmentation + Depth + 3D Point Cloud")
print("Device:", "CUDA" if torch.cuda.is_available() else "CPU")
print("Depth Available:", "YES" if DEPTH_AVAILABLE else "NO")
print("Point Cloud Colors: Segmentation-based (Sky Excluded)")
print(f"Output Directory: {OUTPUT_DIR.absolute()}")
print(f"Available Examples: {len(app.examples_manager.examples)}")
# Launch the app
demo.launch(
share=True, # Creates a public link
debug=True, # Enable debugging
server_name="0.0.0.0", # Allow external connections
server_port=7860, # Default port
show_error=True, # Show errors in the interface
quiet=False # Show startup logs
)