llamat3chat / app.py
Neslihan Bisgin
Add application file
c85e599
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the model and tokenizer
model_name = "m3rg-iitd/llamat-3-chat" #"gpt2" # You can replace this with any model of your choice
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
st.title("Chatbot with LlaMat")
st.write("Ask me anything about material!")
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Function to generate response
def generate_response(prompt):
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# User input
user_input = st.text_input("You: ", "")
if user_input:
st.session_state.messages.append({"role": "user", "content": user_input})
response = generate_response(user_input)
st.session_state.messages.append({"role": "bot", "content": response})
# Display chat history
for message in st.session_state.messages:
if message["role"] == "user":
st.write(f"You: {message['content']}")
else:
st.write(f"Bot: {message['content']}")