|
import gradio as gr |
|
import torch |
|
from transformers import AutoModel, AutoProcessor |
|
|
|
from gender_classification import gender_classification |
|
from emotion_classification import emotion_classification |
|
from dog_breed import dog_breed_classification |
|
from deepfake_quality import deepfake_classification |
|
from gym_workout_classification import workout_classification |
|
from augmented_waste_classifier import waste_classification |
|
from age_classification import age_classification |
|
from mnist_digits import classify_digit |
|
from fashion_mnist_cloth import fashion_mnist_classification |
|
from indian_western_food_classify import food_classification |
|
from bird_species import bird_classification |
|
from alphabet_sign_language_detection import sign_language_classification |
|
from rice_leaf_disease import classify_leaf_disease |
|
from traffic_density import traffic_density_classification |
|
from clip_art import clipart_classification |
|
from multisource_121 import multisource_classification |
|
from painting_126 import painting_classification |
|
from sketch_126 import sketch_classification |
|
|
|
|
|
def classify(image, model_name): |
|
if model_name == "gender": |
|
return gender_classification(image) |
|
elif model_name == "emotion": |
|
return emotion_classification(image) |
|
elif model_name == "dog breed": |
|
return dog_breed_classification(image) |
|
elif model_name == "deepfake": |
|
return deepfake_classification(image) |
|
elif model_name == "gym workout": |
|
return workout_classification(image) |
|
elif model_name == "waste": |
|
return waste_classification(image) |
|
elif model_name == "age": |
|
return age_classification(image) |
|
elif model_name == "mnist": |
|
return classify_digit(image) |
|
elif model_name == "fashion_mnist": |
|
return fashion_mnist_classification(image) |
|
elif model_name == "food": |
|
return food_classification(image) |
|
elif model_name == "bird": |
|
return bird_classification(image) |
|
elif model_name == "leaf disease": |
|
return classify_leaf_disease(image) |
|
elif model_name == "sign language": |
|
return sign_language_classification(image) |
|
elif model_name == "traffic density": |
|
return traffic_density_classification(image) |
|
elif model_name == "clip art": |
|
return clipart_classification(image) |
|
elif model_name == "multisource": |
|
return multisource_classification(image) |
|
elif model_name == "painting": |
|
return painting_classification(image) |
|
elif model_name == "sketch": |
|
return sketch_classification(image) |
|
else: |
|
return {"Error": "No model selected"} |
|
|
|
|
|
def select_model(model_name): |
|
model_variants = { |
|
"gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary", |
|
"gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary", |
|
"fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary", |
|
"sign language": "secondary", "traffic density": "secondary", "clip art": "secondary", |
|
"multisource": "secondary", "painting": "secondary", "sketch": "secondary" |
|
} |
|
model_variants[model_name] = "primary" |
|
return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants)) |
|
|
|
|
|
sg1_ckpt = "google/siglip-so400m-patch14-384" |
|
siglip1_model = AutoModel.from_pretrained(sg1_ckpt, device_map="cpu").eval() |
|
siglip1_processor = AutoProcessor.from_pretrained(sg1_ckpt) |
|
|
|
sg2_ckpt = "google/siglip2-so400m-patch14-384" |
|
siglip2_model = AutoModel.from_pretrained(sg2_ckpt, device_map="cpu").eval() |
|
siglip2_processor = AutoProcessor.from_pretrained(sg2_ckpt) |
|
|
|
def postprocess_siglip(sg1_probs, sg2_probs, labels): |
|
sg1_output = {labels[i]: sg1_probs[0][i].item() for i in range(len(labels))} |
|
sg2_output = {labels[i]: sg2_probs[0][i].item() for i in range(len(labels))} |
|
return sg1_output, sg2_output |
|
|
|
def siglip_detector(image, texts): |
|
sg1_inputs = siglip1_processor( |
|
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64 |
|
).to("cpu") |
|
sg2_inputs = siglip2_processor( |
|
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64 |
|
).to("cpu") |
|
with torch.no_grad(): |
|
sg1_outputs = siglip1_model(**sg1_inputs) |
|
sg2_outputs = siglip2_model(**sg2_inputs) |
|
sg1_logits_per_image = sg1_outputs.logits_per_image |
|
sg2_logits_per_image = sg2_outputs.logits_per_image |
|
sg1_probs = torch.sigmoid(sg1_logits_per_image) |
|
sg2_probs = torch.sigmoid(sg2_logits_per_image) |
|
return sg1_probs, sg2_probs |
|
|
|
def infer(image, candidate_labels): |
|
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")] |
|
sg1_probs, sg2_probs = siglip_detector(image, candidate_labels) |
|
return postprocess_siglip(sg1_probs, sg2_probs, labels=candidate_labels) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Multi-Domain & Zero-Shot Image Classification") |
|
|
|
with gr.Tabs(): |
|
|
|
with gr.Tab("Multi-Domain Classification"): |
|
with gr.Sidebar(): |
|
gr.Markdown("# Choose Domain") |
|
with gr.Row(): |
|
age_btn = gr.Button("Age Classification", variant="primary") |
|
gender_btn = gr.Button("Gender Classification", variant="secondary") |
|
emotion_btn = gr.Button("Emotion Classification", variant="secondary") |
|
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary") |
|
dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary") |
|
bird_btn = gr.Button("Bird Species Classification", variant="secondary") |
|
waste_btn = gr.Button("Waste Classification", variant="secondary") |
|
deepfake_btn = gr.Button("Deepfake Quality Test", variant="secondary") |
|
traffic_density_btn = gr.Button("Traffic Density", variant="secondary") |
|
sign_language_btn = gr.Button("Alphabet Sign Language", variant="secondary") |
|
clip_art_btn = gr.Button("Clip Art 126", variant="secondary") |
|
mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary") |
|
fashion_mnist_btn = gr.Button("Fashion MNIST (only cloth)", variant="secondary") |
|
food_btn = gr.Button("Indian/Western Food Type", variant="secondary") |
|
leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary") |
|
multisource_btn = gr.Button("Multi Source 121", variant="secondary") |
|
painting_btn = gr.Button("Painting 126", variant="secondary") |
|
sketch_btn = gr.Button("Sketch 126", variant="secondary") |
|
|
|
selected_model = gr.State("age") |
|
gr.Markdown("### Current Model:") |
|
model_display = gr.Textbox(value="age", interactive=False) |
|
selected_model.change(lambda m: m, selected_model, model_display) |
|
|
|
buttons = [ |
|
gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, |
|
age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn, |
|
sign_language_btn, traffic_density_btn, clip_art_btn, multisource_btn, painting_btn, sketch_btn |
|
] |
|
model_names = [ |
|
"gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", |
|
"age", "mnist", "fashion_mnist", "food", "bird", "leaf disease", |
|
"sign language", "traffic density", "clip art", "multisource", "painting", "sketch" |
|
] |
|
|
|
for btn, name in zip(buttons, model_names): |
|
btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(type="numpy", label="Upload Image") |
|
analyze_btn = gr.Button("Classify / Predict") |
|
output_label = gr.Label(label="Prediction Scores") |
|
analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label) |
|
|
|
|
|
with gr.Tab("Zero-Shot Classification"): |
|
gr.Markdown("## Compare SigLIP 1 and SigLIP 2 on Zero-Shot Classification") |
|
with gr.Row(): |
|
with gr.Column(): |
|
zs_image_input = gr.Image(type="pil", label="Upload Image") |
|
zs_text_input = gr.Textbox(label="Input a list of labels (comma separated)") |
|
zs_run_button = gr.Button("Run") |
|
with gr.Column(): |
|
siglip1_output = gr.Label(label="SigLIP 1 Output", num_top_classes=3) |
|
siglip2_output = gr.Label(label="SigLIP 2 Output", num_top_classes=3) |
|
zs_run_button.click(fn=infer, inputs=[zs_image_input, zs_text_input], outputs=[siglip1_output, siglip2_output]) |
|
|
|
demo.launch() |