prithivMLmods's picture
app.py v2
49baf5e verified
import gradio as gr
import torch
from transformers import AutoModel, AutoProcessor
from gender_classification import gender_classification
from emotion_classification import emotion_classification
from dog_breed import dog_breed_classification
from deepfake_quality import deepfake_classification
from gym_workout_classification import workout_classification
from augmented_waste_classifier import waste_classification
from age_classification import age_classification
from mnist_digits import classify_digit
from fashion_mnist_cloth import fashion_mnist_classification
from indian_western_food_classify import food_classification
from bird_species import bird_classification
from alphabet_sign_language_detection import sign_language_classification
from rice_leaf_disease import classify_leaf_disease
from traffic_density import traffic_density_classification
from clip_art import clipart_classification
from multisource_121 import multisource_classification
from painting_126 import painting_classification
from sketch_126 import sketch_classification # New import
# Main classification function for multi-model classification.
def classify(image, model_name):
if model_name == "gender":
return gender_classification(image)
elif model_name == "emotion":
return emotion_classification(image)
elif model_name == "dog breed":
return dog_breed_classification(image)
elif model_name == "deepfake":
return deepfake_classification(image)
elif model_name == "gym workout":
return workout_classification(image)
elif model_name == "waste":
return waste_classification(image)
elif model_name == "age":
return age_classification(image)
elif model_name == "mnist":
return classify_digit(image)
elif model_name == "fashion_mnist":
return fashion_mnist_classification(image)
elif model_name == "food":
return food_classification(image)
elif model_name == "bird":
return bird_classification(image)
elif model_name == "leaf disease":
return classify_leaf_disease(image)
elif model_name == "sign language":
return sign_language_classification(image)
elif model_name == "traffic density":
return traffic_density_classification(image)
elif model_name == "clip art":
return clipart_classification(image)
elif model_name == "multisource":
return multisource_classification(image)
elif model_name == "painting":
return painting_classification(image)
elif model_name == "sketch": # New option
return sketch_classification(image)
else:
return {"Error": "No model selected"}
# Function to update the selected model and button styles.
def select_model(model_name):
model_variants = {
"gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
"gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
"fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary",
"sign language": "secondary", "traffic density": "secondary", "clip art": "secondary",
"multisource": "secondary", "painting": "secondary", "sketch": "secondary" # New model variant
}
model_variants[model_name] = "primary"
return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
# Zero-Shot Classification Setup (SigLIP models)
sg1_ckpt = "google/siglip-so400m-patch14-384"
siglip1_model = AutoModel.from_pretrained(sg1_ckpt, device_map="cpu").eval()
siglip1_processor = AutoProcessor.from_pretrained(sg1_ckpt)
sg2_ckpt = "google/siglip2-so400m-patch14-384"
siglip2_model = AutoModel.from_pretrained(sg2_ckpt, device_map="cpu").eval()
siglip2_processor = AutoProcessor.from_pretrained(sg2_ckpt)
def postprocess_siglip(sg1_probs, sg2_probs, labels):
sg1_output = {labels[i]: sg1_probs[0][i].item() for i in range(len(labels))}
sg2_output = {labels[i]: sg2_probs[0][i].item() for i in range(len(labels))}
return sg1_output, sg2_output
def siglip_detector(image, texts):
sg1_inputs = siglip1_processor(
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64
).to("cpu")
sg2_inputs = siglip2_processor(
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64
).to("cpu")
with torch.no_grad():
sg1_outputs = siglip1_model(**sg1_inputs)
sg2_outputs = siglip2_model(**sg2_inputs)
sg1_logits_per_image = sg1_outputs.logits_per_image
sg2_logits_per_image = sg2_outputs.logits_per_image
sg1_probs = torch.sigmoid(sg1_logits_per_image)
sg2_probs = torch.sigmoid(sg2_logits_per_image)
return sg1_probs, sg2_probs
def infer(image, candidate_labels):
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
sg1_probs, sg2_probs = siglip_detector(image, candidate_labels)
return postprocess_siglip(sg1_probs, sg2_probs, labels=candidate_labels)
# Build the Gradio Interface with two tabs.
with gr.Blocks() as demo:
gr.Markdown("# Multi-Domain & Zero-Shot Image Classification")
with gr.Tabs():
# Tab 1: Multi-Model Classification
with gr.Tab("Multi-Domain Classification"):
with gr.Sidebar():
gr.Markdown("# Choose Domain")
with gr.Row():
age_btn = gr.Button("Age Classification", variant="primary")
gender_btn = gr.Button("Gender Classification", variant="secondary")
emotion_btn = gr.Button("Emotion Classification", variant="secondary")
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary")
bird_btn = gr.Button("Bird Species Classification", variant="secondary")
waste_btn = gr.Button("Waste Classification", variant="secondary")
deepfake_btn = gr.Button("Deepfake Quality Test", variant="secondary")
traffic_density_btn = gr.Button("Traffic Density", variant="secondary")
sign_language_btn = gr.Button("Alphabet Sign Language", variant="secondary")
clip_art_btn = gr.Button("Clip Art 126", variant="secondary")
mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
fashion_mnist_btn = gr.Button("Fashion MNIST (only cloth)", variant="secondary")
food_btn = gr.Button("Indian/Western Food Type", variant="secondary")
leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary")
multisource_btn = gr.Button("Multi Source 121", variant="secondary")
painting_btn = gr.Button("Painting 126", variant="secondary")
sketch_btn = gr.Button("Sketch 126", variant="secondary")
selected_model = gr.State("age")
gr.Markdown("### Current Model:")
model_display = gr.Textbox(value="age", interactive=False)
selected_model.change(lambda m: m, selected_model, model_display)
buttons = [
gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn,
age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn,
sign_language_btn, traffic_density_btn, clip_art_btn, multisource_btn, painting_btn, sketch_btn # Include new button
]
model_names = [
"gender", "emotion", "dog breed", "deepfake", "gym workout", "waste",
"age", "mnist", "fashion_mnist", "food", "bird", "leaf disease",
"sign language", "traffic density", "clip art", "multisource", "painting", "sketch" # New model name
]
for btn, name in zip(buttons, model_names):
btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="numpy", label="Upload Image")
analyze_btn = gr.Button("Classify / Predict")
output_label = gr.Label(label="Prediction Scores")
analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)
# Tab 2: Zero-Shot Classification (SigLIP)
with gr.Tab("Zero-Shot Classification"):
gr.Markdown("## Compare SigLIP 1 and SigLIP 2 on Zero-Shot Classification")
with gr.Row():
with gr.Column():
zs_image_input = gr.Image(type="pil", label="Upload Image")
zs_text_input = gr.Textbox(label="Input a list of labels (comma separated)")
zs_run_button = gr.Button("Run")
with gr.Column():
siglip1_output = gr.Label(label="SigLIP 1 Output", num_top_classes=3)
siglip2_output = gr.Label(label="SigLIP 2 Output", num_top_classes=3)
zs_run_button.click(fn=infer, inputs=[zs_image_input, zs_text_input], outputs=[siglip1_output, siglip2_output])
demo.launch()