rakesh-dvg's picture
Update agent.py
3b4f489 verified
import os
from dotenv import load_dotenv
from supabase import create_client
from supabase.client import Client
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.tools.retriever import create_retriever_tool
load_dotenv()
# Check environment variables
SUPABASE_URL = os.environ.get("SUPABASE_URL")
SUPABASE_SERVICE_KEY = os.environ.get("SUPABASE_SERVICE_KEY")
print(f"SUPABASE_URL: {SUPABASE_URL[:10]}..." if SUPABASE_URL else "SUPABASE_URL not set")
print(f"SUPABASE_SERVICE_KEY: {SUPABASE_SERVICE_KEY[:10]}..." if SUPABASE_SERVICE_KEY else "SUPABASE_SERVICE_KEY not set")
def get_supabase_client():
if not SUPABASE_URL or not SUPABASE_SERVICE_KEY:
raise ValueError("Supabase environment variables are missing.")
return create_client(SUPABASE_URL, SUPABASE_SERVICE_KEY)
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Modulo operation."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for the query and return top results."""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join([doc.page_content for doc in docs])
@tool
def web_search(query: str) -> str:
"""Search the web and return top results."""
docs = TavilySearchResults(max_results=3).invoke(query=query)
return "\n\n---\n\n".join([doc.page_content for doc in docs])
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for the query and return excerpts."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in docs])
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read().strip()
if not system_prompt:
print("Warning: system_prompt.txt is empty. Using default system prompt.")
system_prompt = "You are a helpful assistant."
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "groq"):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
supabase = get_supabase_client()
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
else:
raise ValueError("Invalid provider specified")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
try:
print("Assistant received messages:")
for m in state["messages"]:
print(f"- {m.__class__.__name__}: {m.content[:100]}")
result = llm_with_tools.invoke(state["messages"])
print("LLM output message:")
if hasattr(result, "content"):
print(result.content[:500])
else:
print(result)
if not result or not getattr(result, "content", None):
print("Warning: LLM returned empty result or no content.")
return {"messages": [HumanMessage(content="Sorry, I couldn't generate an answer.")]}
return {"messages": [result]}
except Exception as e:
print(f"Error invoking LLM: {e}")
return {"messages": [HumanMessage(content="Sorry, I encountered an error during processing.")]}
def retriever(state: MessagesState):
similar = vector_store.similarity_search(state["messages"][0].content)
msg = HumanMessage(content=f"Similar question reference:\n\n{similar[0].page_content}")
return {"messages": [sys_msg] + state["messages"] + [msg]}
graph = StateGraph(MessagesState)
graph.add_node("retriever", retriever)
graph.add_node("assistant", assistant)
graph.add_node("tools", ToolNode(tools))
graph.add_edge(START, "retriever")
graph.add_edge("retriever", "assistant")
graph.add_conditional_edges("assistant", tools_condition)
graph.add_edge("tools", "assistant")
return graph.compile()
if __name__ == "__main__":
g = build_graph("groq")
question = "When was Aquinas added to Wikipedia page on double effect?"
output = g.invoke({"messages": [HumanMessage(content=question)]})
for msg in output["messages"]:
print(f"\n[{msg.__class__.__name__}] {msg.content}\n")