Spaces:
Runtime error
Runtime error
File size: 1,340 Bytes
c455085 5553133 c455085 44cfbeb 5553133 44cfbeb 5553133 44cfbeb 5553133 44cfbeb 5553133 44cfbeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
from utils import load_pipeline_from_huggingface
def predict_sentiment(text):
"""
Predict sentiment of the input text using the loaded pipeline.
Args:
text (str): Input text to analyze
Returns:
str: Sentiment prediction
"""
try:
# Load pipeline
sentiment_pipeline = load_pipeline_from_huggingface()
# Get prediction using pipeline
results = sentiment_pipeline(text)
# Extract the highest confidence prediction
best_result = max(results[0], key=lambda x: x['score'])
sentiment = best_result['label']
confidence = best_result['score']
return f"Sentiment: {sentiment} (Confidence: {confidence:.2f})"
except Exception as e:
return f"Error: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=predict_sentiment,
inputs="text",
outputs="text",
title="Financial Sentiment Analysis",
description="Enter financial text to analyze sentiment using the finetuned FinBERT model.",
examples=[
"The stock market is performing well today.",
"The company's earnings report was disappointing.",
"Investors are optimistic about the future prospects."
]
)
if __name__ == "__main__":
demo.launch()
|