File size: 15,169 Bytes
69defc9
 
 
 
 
c030074
 
69defc9
 
 
 
 
 
 
016b505
 
 
 
 
69defc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbd872
 
 
 
 
69defc9
3cbd872
 
 
 
69defc9
3cbd872
 
 
 
69defc9
3cbd872
 
 
69defc9
3cbd872
 
 
 
 
 
 
69defc9
3cbd872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69defc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbd872
69defc9
 
 
 
3cbd872
 
 
 
 
 
69defc9
 
3cbd872
69defc9
 
3cbd872
69defc9
 
 
 
 
 
 
 
 
 
 
3cbd872
69defc9
 
3cbd872
 
 
 
 
69defc9
3cbd872
 
69defc9
3cbd872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69defc9
3cbd872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69defc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26b4dcc
69defc9
 
 
 
 
 
3cbd872
 
 
 
69defc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbd872
69defc9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import os
import sys
import gradio as gr
import torch
import numpy as np
import matplotlib
matplotlib.use('Agg')  # Set backend before importing pyplot
import matplotlib.pyplot as plt
from PIL import Image
from huggingface_hub import hf_hub_download
import pretty_midi
import librosa
import soundfile as sf
from midi2audio import FluidSynth
import spaces

# Remove CPU forcing since we'll use ZeroGPU
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
# torch.set_num_threads(4)

from aria.image_encoder import ImageEncoder
from aria.aria import ARIA

print("Checking model files...")
# Pre-download all model files at startup
MODEL_FILES = {
    "image_encoder": "image_encoder.pt",
    "continuous_concat": ["continuous_concat/model.pt", "continuous_concat/mappings.pt", "continuous_concat/model_config.pt"],
    "continuous_token": ["continuous_token/model.pt", "continuous_token/mappings.pt", "continuous_token/model_config.pt"],
    "discrete_token": ["discrete_token/model.pt", "discrete_token/mappings.pt", "discrete_token/model_config.pt"]
}

# Create cache directory
CACHE_DIR = os.path.join(os.path.dirname(__file__), "model_cache")
os.makedirs(CACHE_DIR, exist_ok=True)

# Download and cache all files
cached_files = {}
for model_type, files in MODEL_FILES.items():
    if isinstance(files, str):
        files = [files]
    
    cached_files[model_type] = []
    for file in files:
        try:
            # Check if file already exists in cache
            repo_id = "vincentamato/aria"
            cached_path = os.path.join(CACHE_DIR, repo_id, file)
            if os.path.exists(cached_path):
                print(f"Using cached file: {file}")
                cached_files[model_type].append(cached_path)
            else:
                print(f"Downloading file: {file}")
                cached_path = hf_hub_download(
                    repo_id=repo_id,
                    filename=file,
                    cache_dir=CACHE_DIR
                )
                cached_files[model_type].append(cached_path)
        except Exception as e:
            print(f"Error with file {file}: {str(e)}")

print("Model files ready.")

# Global model cache
models = {}

def create_emotion_plot(valence, arousal):
    """Create a valence-arousal plot with the predicted emotion point"""
    # Create figure in a process-safe way
    fig = plt.figure(figsize=(8, 8), dpi=100)
    ax = fig.add_subplot(111)
    
    # Set background color and style
    plt.style.use('default')  # Use default style instead of seaborn
    fig.patch.set_facecolor('#ffffff')
    ax.set_facecolor('#ffffff')
    
    # Create the coordinate system with a light grid
    ax.grid(True, linestyle='--', alpha=0.2)
    ax.axhline(y=0, color='#666666', linestyle='-', alpha=0.3, linewidth=1)
    ax.axvline(x=0, color='#666666', linestyle='-', alpha=0.3, linewidth=1)
    
    # Plot region
    circle = plt.Circle((0, 0), 1, fill=False, color='#666666', alpha=0.3, linewidth=1.5)
    ax.add_artist(circle)
    
    # Add labels with nice fonts
    font = {'family': 'sans-serif', 'weight': 'medium', 'size': 12}
    label_dist = 1.35  # Increased distance for labels
    ax.text(label_dist, 0, 'Positive', ha='left', va='center', **font)
    ax.text(-label_dist, 0, 'Negative', ha='right', va='center', **font)
    ax.text(0, label_dist, 'Excited', ha='center', va='bottom', **font)
    ax.text(0, -label_dist, 'Calm', ha='center', va='top', **font)
    
    # Plot the point with a nice style
    ax.scatter([valence], [arousal], c='#4f46e5', s=150, zorder=5, alpha=0.8)
    
    # Set limits and labels with more padding
    ax.set_xlim(-1.6, 1.6)
    ax.set_ylim(-1.6, 1.6)
    
    # Format ticks
    ax.set_xticks([-1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5])
    ax.set_yticks([-1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5])
    ax.tick_params(axis='both', which='major', labelsize=10)
    
    # Add axis labels with padding
    ax.set_xlabel('Valence', **font, labelpad=15)
    ax.set_ylabel('Arousal', **font, labelpad=15)
    
    # Remove spines
    for spine in ax.spines.values():
        spine.set_visible(False)
    
    # Adjust layout with more padding
    plt.tight_layout(pad=1.5)
    
    # Save to a temporary file and return the path
    temp_path = os.path.join(os.path.dirname(__file__), "output", "emotion_plot.png")
    os.makedirs(os.path.dirname(temp_path), exist_ok=True)
    plt.savefig(temp_path, bbox_inches='tight', dpi=100)
    plt.close(fig)  # Close the figure to free memory
    
    return temp_path

def get_model(conditioning_type):
    """Get or initialize model with specified conditioning"""
    if conditioning_type not in models:
        try:
            # Use cached files
            image_model_path = cached_files["image_encoder"][0]
            midi_model_dir = os.path.dirname(cached_files[conditioning_type][0])
            
            models[conditioning_type] = ARIA(
                image_model_checkpoint=image_model_path,
                midi_model_dir=midi_model_dir,
                conditioning=conditioning_type
            )
        except Exception as e:
            print(f"Error initializing {conditioning_type} model: {str(e)}")
            return None
    return models[conditioning_type]

def convert_midi_to_wav(midi_path):
    """Convert MIDI file to WAV using FluidSynth"""
    wav_path = midi_path.replace('.mid', '.wav')
    
    # If WAV file already exists and is newer than MIDI file, use cached version
    if os.path.exists(wav_path) and os.path.getmtime(wav_path) > os.path.getmtime(midi_path):
        return wav_path
        
    try:
        # Check common soundfont locations
        soundfont_paths = [
            '/usr/share/sounds/sf2/FluidR3_GM.sf2',  # Linux
            '/usr/share/soundfonts/default.sf2',      # Linux alternative
            '/usr/local/share/fluidsynth/generaluser.sf2',  # macOS
            'C:\\soundfonts\\generaluser.sf2'         # Windows
        ]
        
        soundfont = None
        for sf_path in soundfont_paths:
            if os.path.exists(sf_path):
                soundfont = sf_path
                break
                
        if soundfont is None:
            raise RuntimeError("No SoundFont file found. Please install fluid-soundfont-gm package.")
            
        # Convert MIDI to WAV using FluidSynth with explicit soundfont
        fs = FluidSynth(sound_font=soundfont)
        fs.midi_to_audio(midi_path, wav_path)
        
        return wav_path
    except Exception as e:
        print(f"Error converting MIDI to WAV: {str(e)}")
        return None

@spaces.GPU(duration=120)
def generate_music(image, conditioning_type, gen_len, temperature, top_p, min_instruments):
    """Generate music from input image"""
    model = get_model(conditioning_type)
    if model is None:
        # IMPORTANT: Return a 3-element tuple, not a dictionary
        return (
            None,  # For emotion_chart
            None,  # For midi_output
            f"⚠️ Error: Failed to initialize {conditioning_type} model. Please check the logs."
        )
    
    try:
        # Create output directory
        output_dir = os.path.join(os.path.dirname(__file__), "output")
        os.makedirs(output_dir, exist_ok=True)

        # Generate music
        valence, arousal, midi_path = model.generate(
            image_path=image,
            out_dir=output_dir,
            gen_len=gen_len,
            temperature=temperature,
            top_k=-1,
            top_p=float(top_p),
            min_instruments=int(min_instruments)
        )
        
        # Convert MIDI to WAV
        wav_path = convert_midi_to_wav(midi_path)
        if wav_path is None:
            return (
                None,
                None,
                "⚠️ Error: Failed to convert MIDI to WAV for playback"
            )
        
        # Create emotion plot
        plot_path = create_emotion_plot(valence, arousal)
        
        # Build a nice Markdown result string
        result_text = f"""
**Model Type:** {conditioning_type}

**Predicted Emotions:**
- Valence: {valence:.3f} (negative → positive)
- Arousal: {arousal:.3f} (calm → excited)

**Generation Parameters:**
- Temperature: {temperature}
- Top-p: {top_p}
- Min Instruments: {min_instruments}

Your music has been generated! Click the play button above to listen.
"""

        # RETURN AS A TUPLE
        return (plot_path, wav_path, result_text)
    
    except Exception as e:
        return (
            None,
            None,
            f"⚠️ Error generating music: {str(e)}"
        )

def generate_music_wrapper(image, conditioning_type, gen_len, note_temp, rest_temp, top_p, min_instruments):
    """Wrapper for generate_music that handles separate temperatures"""
    return generate_music(
        image=image,
        conditioning_type=conditioning_type,
        gen_len=gen_len,
        temperature=[float(note_temp), float(rest_temp)],
        top_p=top_p,
        min_instruments=min_instruments
    )

# Create Gradio interface
with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
        primary_hue="indigo",
        secondary_hue="slate",
        font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"]
    )) as demo:
    gr.Markdown("""
    # 🎨 ARIA: Artistic Rendering of Images into Audio
    
    Upload an image and ARIA will analyze its emotional content to generate matching music!
    
    ### How it works:
    1. ARIA first analyzes the emotional content of your image along two dimensions:
       - **Valence**: How positive or negative the emotion is (-1 to 1)
       - **Arousal**: How calm or excited the emotion is (-1 to 1)
    2. These emotions are then used to generate music that matches the mood
    """)
    
    with gr.Row():
        with gr.Column(scale=3):
            image_input = gr.Image(
                type="filepath",
                label="Upload Image"
            )
            
            with gr.Group():
                gr.Markdown("### Generation Settings")
                
                with gr.Row():
                    with gr.Column():
                        conditioning_type = gr.Radio(
                            choices=["continuous_concat", "continuous_token", "discrete_token"],
                            value="continuous_concat",
                            label="Conditioning Type",
                            info="How the emotional information is incorporated into the music generation"
                        )
                    with gr.Column():
                        gen_len = gr.Slider(
                            minimum=256,
                            maximum=4096,
                            value=1024,
                            step=256,
                            label="Generation Length",
                            info="Number of tokens to generate (longer = more music)"
                        )
                
                with gr.Row():
                    with gr.Column():
                        note_temperature = gr.Slider(
                            minimum=0.1,
                            maximum=2.0,
                            value=1.2,
                            step=0.1,
                            label="Note Temperature",
                            info="Controls randomness of note generation"
                        )
                    with gr.Column():
                        rest_temperature = gr.Slider(
                            minimum=0.1,
                            maximum=2.0,
                            value=1.2,
                            step=0.1,
                            label="Rest Temperature",
                            info="Controls randomness of rest/timing generation"
                        )
                
                with gr.Row():
                    with gr.Column():
                        top_p = gr.Slider(
                            minimum=0.1,
                            maximum=1.0,
                            value=0.6,
                            step=0.1,
                            label="Top-p Sampling",
                            info="Nucleus sampling threshold - lower = more focused"
                        )
                    with gr.Column():
                        min_instruments = gr.Slider(
                            minimum=1,
                            maximum=5,
                            value=2,
                            step=1,
                            label="Minimum Instruments",
                            info="Minimum number of instruments in the generated music"
                        )
            
            generate_btn = gr.Button("🎵 Generate Music", variant="primary", size="lg")
            
            # Add examples
            gr.Examples(
                examples=[
                    ["examples/happy.jpg", "continuous_concat", 1024, 1.2, 1.2, 0.6, 2],
                    ["examples/sad.jpeg", "continuous_concat", 1024, 1.2, 1.2, 0.6, 2],
                ],
                inputs=[image_input, conditioning_type, gen_len, note_temperature, rest_temperature, top_p, min_instruments],
                label="Try these examples"
            )
        
        with gr.Column(scale=2):
            emotion_chart = gr.Image(
                label="Predicted Emotions",
                type="filepath"
            )
            midi_output = gr.Audio(
                type="filepath",
                label="Generated Music"
            )
            results = gr.Markdown()
    
    gr.Markdown("""
    ### About ARIA
    
    ARIA is a deep learning system that generates music from artwork by:
    1. Using a image emotion model to extract emotional content from images
    2. Generating matching music using an emotion-conditioned music generation model
    
    The emotion-conditioned MIDI generation model is based on the work by Serkan Sulun et al. in their paper 
    ["Symbolic music generation conditioned on continuous-valued emotions"](https://ieeexplore.ieee.org/document/9762257).
    Original implementation: [github.com/serkansulun/midi-emotion](https://github.com/serkansulun/midi-emotion)
    
    ### Conditioning Types
    - **continuous_concat**: Emotions are concatenated with music features (recommended)
    - **continuous_token**: Emotions are added as special tokens
    - **discrete_token**: Emotions are discretized into tokens
    """)

    def generate_music_wrapper(image, conditioning_type, gen_len, note_temp, rest_temp, top_p, min_instruments):
        """Wrapper for generate_music that handles separate temperatures"""
        return generate_music(
            image=image,
            conditioning_type=conditioning_type,
            gen_len=gen_len,
            temperature=[float(note_temp), float(rest_temp)],
            top_p=top_p,
            min_instruments=min_instruments
        )

    generate_btn.click(
        fn=generate_music_wrapper,
        inputs=[image_input, conditioning_type, gen_len, note_temperature, rest_temperature, top_p, min_instruments],
        outputs=[emotion_chart, midi_output, results]
    )

# Launch app
demo.launch(share=True)