Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from datetime import datetime | |
import pytz | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
get_INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
INTRODUCE_BENCHMARK | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_open_model_eval | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
# load the evaluation requests and results locally | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
dataframe.insert(0, '', range(1, len(dataframe) + 1)) | |
return Leaderboard( | |
value=dataframe, | |
datatype=[int]+[c.type for c in fields(AutoEvalColumn)], | |
search_columns=[AutoEvalColumn.model.name], | |
hide_columns=["Available on the hub"], | |
filter_columns=[ | |
ColumnFilter( | |
AutoEvalColumn.still_on_hub.name, type="boolean", label="π Show Open Models Only", default=False | |
), | |
], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.HTML(get_INTRODUCTION_TEXT(LEADERBOARD_DF.shape[0] , datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S"), paper_link= "https://arxiv.org/abs/2503.12329"), elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=1): | |
gr.HTML(INTRODUCE_BENCHMARK) #TODO | |
leaderboard = init_leaderboard(LEADERBOARD_DF) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
# with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
# with gr.Column(): | |
# with gr.Row(): | |
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
# # with gr.Column(): | |
# # with gr.Accordion( | |
# # f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
# # open=False, | |
# # ): | |
# # with gr.Row(): | |
# # finished_eval_table = gr.components.Dataframe( | |
# # value=finished_eval_queue_df, | |
# # headers=EVAL_COLS, | |
# # datatype=EVAL_TYPES, | |
# # row_count=5, | |
# # ) | |
# # with gr.Accordion( | |
# # f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
# # open=False, | |
# # ): | |
# # with gr.Row(): | |
# # running_eval_table = gr.components.Dataframe( | |
# # value=running_eval_queue_df, | |
# # headers=EVAL_COLS, | |
# # datatype=EVAL_TYPES, | |
# # row_count=5, | |
# # ) | |
# # with gr.Accordion( | |
# # f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
# # open=False, | |
# # ): | |
# # with gr.Row(): | |
# # pending_eval_table = gr.components.Dataframe( | |
# # value=pending_eval_queue_df, | |
# # headers=EVAL_COLS, | |
# # datatype=EVAL_TYPES, | |
# # row_count=5, | |
# # ) | |
# with gr.Row(): | |
# gr.Markdown("# βοΈβ¨ Submit Open model here!", elem_classes="markdown-text") | |
# with gr.Row(): | |
# with gr.Column(): | |
# model_name = gr.Textbox(label="Model name") | |
# submit_button = gr.Button("Submit Eval") | |
# submission_result = gr.Markdown() | |
# submit_button.click( | |
# add_new_open_model_eval, | |
# [ | |
# model_name | |
# ], | |
# submission_result, | |
# ) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |