CapArena_Auto / app.py
ycy
1
e8ad5ad
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from datetime import datetime
import pytz
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
get_INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
INTRODUCE_BENCHMARK
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_open_model_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
# load the evaluation requests and results locally
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
dataframe.insert(0, '', range(1, len(dataframe) + 1))
return Leaderboard(
value=dataframe,
datatype=[int]+[c.type for c in fields(AutoEvalColumn)],
search_columns=[AutoEvalColumn.model.name],
hide_columns=["Available on the hub"],
filter_columns=[
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="πŸ”‘ Show Open Models Only", default=False
),
],
bool_checkboxgroup_label="Hide models",
interactive=False
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.HTML(get_INTRODUCTION_TEXT(LEADERBOARD_DF.shape[0] , datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S"), paper_link= "https://arxiv.org/abs/2503.12329"), elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=1):
gr.HTML(INTRODUCE_BENCHMARK) #TODO
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# # with gr.Column():
# # with gr.Accordion(
# # f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
# # open=False,
# # ):
# # with gr.Row():
# # finished_eval_table = gr.components.Dataframe(
# # value=finished_eval_queue_df,
# # headers=EVAL_COLS,
# # datatype=EVAL_TYPES,
# # row_count=5,
# # )
# # with gr.Accordion(
# # f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
# # open=False,
# # ):
# # with gr.Row():
# # running_eval_table = gr.components.Dataframe(
# # value=running_eval_queue_df,
# # headers=EVAL_COLS,
# # datatype=EVAL_TYPES,
# # row_count=5,
# # )
# # with gr.Accordion(
# # f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# # open=False,
# # ):
# # with gr.Row():
# # pending_eval_table = gr.components.Dataframe(
# # value=pending_eval_queue_df,
# # headers=EVAL_COLS,
# # datatype=EVAL_TYPES,
# # row_count=5,
# # )
# with gr.Row():
# gr.Markdown("# βœ‰οΈβœ¨ Submit Open model here!", elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name = gr.Textbox(label="Model name")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_open_model_eval,
# [
# model_name
# ],
# submission_result,
# )
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()