metadata
language:
- en
tags:
- sentence-transformers
- sparse-encoder
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
widget:
- source_sentence: who are the dancers in the limp bizkit rollin video
sentences:
- >-
Voting age Before the Second World War, the voting age in almost all
countries was 21 years or higher. Czechoslovakia was the first to reduce
the voting age to 20 years in 1946, and by 1968 a total of 17 countries
had lowered their voting age.[1] Many countries, particularly in Western
Europe, reduced their voting ages to 18 years during the 1970s, starting
with the United Kingdom (1969),[2] with the United States (26th
Amendment) (1971), Canada, West Germany (1972), Australia (1974), France
(1974), and others following soon afterwards. By the end of the 20th
century, 18 had become by far the most common voting age. However, a few
countries maintain a voting age of 20 years or higher. It was argued
that young men could be drafted to go to war at 18, and many people felt
they should be able to vote at the age of 18.[3]
- >-
Rollin' (Limp Bizkit song) The music video was filmed atop the South
Tower of the former World Trade Center in New York City. The
introduction features Ben Stiller and Stephen Dorff mistaking Fred Durst
for the valet and giving him the keys to their Bentley Azure. Also
making a cameo is break dancer Mr. Wiggles. The rest of the video has
several cuts to Durst and his bandmates hanging out of the Bentley as
they drive about Manhattan. The song Ben Stiller is playing at the
beginning is "My Generation" from the same album. The video also
features scenes of Fred Durst with five girls dancing in a room. The
video was filmed around the same time as the film Zoolander, which
explains Stiller and Dorff's appearance. Fred Durst has a small cameo in
that film.
- >-
Eobard Thawne When Thawne reappears, he murders the revived Johnny
Quick,[9] before proceeding to trap Barry and the revived Max Mercury
inside the negative Speed Force. Thawne then attempts to kill Wally
West's children through their connection to the Speed Force in front of
Linda Park-West, only to be stopped by Jay Garrick and Bart Allen.
Thawne defeats Jay and prepares to kill Bart, but Barry, Max, Wally,
Jesse Quick, and Impulse arrive to prevent the villain from doing
so.[8][10] In the ensuing fight, Thawne reveals that he is responsible
for every tragedy that has occurred in Barry's life, including the death
of his mother. Thawne then decides to destroy everything the Flash holds
dear by killing Barry's wife, Iris, before they even met.[10]
- source_sentence: who wins season 14 of hell's kitchen
sentences:
- >-
Hell's Kitchen (U.S. season 14) Season 14 of the American competitive
reality television series Hell's Kitchen premiered on March 3, 2015 on
Fox. The prize is a head chef position at Gordon Ramsay Pub & Grill in
Caesars Atlantic City.[1] Gordon Ramsay returned as head chef with Andi
Van Willigan and James Avery returning as sous-chefs for both their
respective kitchens as well as Marino Monferrato as the maître d'.
Executive chef Meghan Gill from Roanoke, Virginia, won the competition,
thus becoming the fourteenth winner of Hell's Kitchen.
- >-
Maze Runner: The Death Cure On April 22, 2017, the studio delayed the
release date once again, to February 9, 2018, in order to allow more
time for post-production; months later, on August 25, the studio moved
the release forward two weeks.[17] The film will premiere on January 26,
2018 in 3D, IMAX and IMAX 3D.[18][19]
- >-
North American Plate On its western edge, the Farallon Plate has been
subducting under the North American Plate since the Jurassic Period. The
Farallon Plate has almost completely subducted beneath the western
portion of the North American Plate leaving that part of the North
American Plate in contact with the Pacific Plate as the San Andreas
Fault. The Juan de Fuca, Explorer, Gorda, Rivera, Cocos and Nazca plates
are remnants of the Farallon Plate.
- source_sentence: who played the dj in the movie the warriors
sentences:
- "List of Arrow episodes As of May\_17, 2018,[update] 138 episodes of Arrow\_have aired, concluding the\_sixth season. On April 2, 2018, the CW renewed the series for a seventh season.[1]"
- >-
Lynne Thigpen Cherlynne Theresa "Lynne" Thigpen (December 22, 1948 –
March 12, 2003) was an American actress, best known for her role as "The
Chief" of ACME in the various Carmen Sandiego television series and
computer games from 1991 to 1997. For her varied television work,
Thigpen was nominated for six Daytime Emmy Awards; she won a Tony Award
in 1997 for portraying Dr. Judith Kaufman in An American Daughter.
- >-
The Washington Post The Washington Post is an American daily newspaper.
It is the most widely circulated newspaper published in Washington,
D.C., and was founded on December 6, 1877,[7] making it the area's
oldest extant newspaper. In February 2017, amid a barrage of criticism
from President Donald Trump over the paper's coverage of his campaign
and early presidency as well as concerns among the American press about
Trump's criticism and threats against journalists who provide coverage
he deems unfavorable, the Post adopted the slogan "Democracy Dies in
Darkness".[8]
- source_sentence: how old was messi when he started his career
sentences:
- >-
Lionel Messi Born and raised in central Argentina, Messi was diagnosed
with a growth hormone deficiency as a child. At age 13, he relocated to
Spain to join Barcelona, who agreed to pay for his medical treatment.
After a fast progression through Barcelona's youth academy, Messi made
his competitive debut aged 17 in October 2004. Despite being
injury-prone during his early career, he established himself as an
integral player for the club within the next three years, finishing 2007
as a finalist for both the Ballon d'Or and FIFA World Player of the Year
award, a feat he repeated the following year. His first uninterrupted
campaign came in the 2008–09 season, during which he helped Barcelona
achieve the first treble in Spanish football. At 22 years old, Messi won
the Ballon d'Or and FIFA World Player of the Year award by record voting
margins.
- >-
We Are Marshall Filming of We Are Marshall commenced on April 3, 2006,
in Huntington, West Virginia, and was completed in Atlanta, Georgia. The
premiere for the film was held at the Keith Albee Theater on December
12, 2006, in Huntington; other special screenings were held at Pullman
Square. The movie was released nationwide on December 22, 2006.
- >-
One Fish, Two Fish, Red Fish, Blue Fish One Fish, Two Fish, Red Fish,
Blue Fish is a 1960 children's book by Dr. Seuss. It is a simple rhyming
book for beginning readers, with a freewheeling plot about a boy and a
girl named Jay and Kay and the many amazing creatures they have for
friends and pets. Interspersed are some rather surreal and unrelated
skits, such as a man named Ned whose feet stick out from his bed, and a
creature who has a bird in his ear. As of 2001, over 6 million copies of
the book had been sold, placing it 13th on a list of "All-Time
Bestselling Children's Books" from Publishers Weekly.[1] Based on a 2007
online poll, the United States' National Education Association labor
union named the book one of its "Teachers' Top 100 Books for
Children."[2]
- source_sentence: is send in the clowns from a musical
sentences:
- >-
Money in the Bank ladder match The first match was contested in 2005 at
WrestleMania 21, after being invented (in kayfabe) by Chris Jericho.[1]
At the time, it was exclusive to wrestlers of the Raw brand, and Edge
won the inaugural match.[1] From then until 2010, the Money in the Bank
ladder match, now open to all WWE brands, became a WrestleMania
mainstay. 2010 saw a second and third Money in the Bank ladder match
when the Money in the Bank pay-per-view debuted in July. Unlike the
matches at WrestleMania, this new event featured two such ladder matches
– one each for a contract for the WWE Championship and World
Heavyweight Championship, respectively.
- >-
The Suite Life on Deck The Suite Life on Deck is an American sitcom that
aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a
sequel/spin-off of the Disney Channel Original Series The Suite Life of
Zack & Cody. The series follows twin brothers Zack and Cody Martin and
hotel heiress London Tipton in a new setting, the SS Tipton, where they
attend classes at "Seven Seas High School" and meet Bailey Pickett while
Mr. Moseby manages the ship. The ship travels around the world to
nations such as Italy, France, Greece, India, Sweden and the United
Kingdom where the characters experience different cultures, adventures,
and situations.[1]
- >-
Send In the Clowns "Send In the Clowns" is a song written by Stephen
Sondheim for the 1973 musical A Little Night Music, an adaptation of
Ingmar Bergman's film Smiles of a Summer Night. It is a ballad from Act
Two, in which the character Desirée reflects on the ironies and
disappointments of her life. Among other things, she looks back on an
affair years earlier with the lawyer Fredrik, who was deeply in love
with her but whose marriage proposals she had rejected. Meeting him
after so long, she realizes she is in love with him and finally ready to
marry him, but now it is he who rejects her: he is in an unconsummated
marriage with a much younger woman. Desirée proposes marriage to rescue
him from this situation, but he declines, citing his dedication to his
bride. Reacting to his rejection, Desirée sings this song. The song is
later reprised as a coda after Fredrik's young wife runs away with his
son, and Fredrik is finally free to accept Desirée's offer.[1]
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SparseEncoder
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.46
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.72
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.15999999999999998
name: Dot Precision@3
- type: dot_precision@5
value: 0.124
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.06666666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.2383333333333333
name: Dot Recall@3
- type: dot_recall@5
value: 0.27999999999999997
name: Dot Recall@5
- type: dot_recall@10
value: 0.36999999999999994
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2677421246620843
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3605714285714285
name: Dot Mrr@10
- type: dot_map@100
value: 0.1850759743565379
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.66
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.76
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.84
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.94
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.66
name: Dot Precision@1
- type: dot_precision@3
value: 0.5266666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.488
name: Dot Precision@5
- type: dot_precision@10
value: 0.44800000000000006
name: Dot Precision@10
- type: dot_recall@1
value: 0.06670257100262758
name: Dot Recall@1
- type: dot_recall@3
value: 0.11974142991079241
name: Dot Recall@3
- type: dot_recall@5
value: 0.1791957371678672
name: Dot Recall@5
- type: dot_recall@10
value: 0.30349140489526194
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5343019203634498
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.735468253968254
name: Dot Mrr@10
- type: dot_map@100
value: 0.4049377767237549
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.48
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.82
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.88
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.48
name: Dot Precision@1
- type: dot_precision@3
value: 0.28
name: Dot Precision@3
- type: dot_precision@5
value: 0.17999999999999997
name: Dot Precision@5
- type: dot_precision@10
value: 0.09399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.47
name: Dot Recall@1
- type: dot_recall@3
value: 0.79
name: Dot Recall@3
- type: dot_recall@5
value: 0.85
name: Dot Recall@5
- type: dot_recall@10
value: 0.89
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7040555094504362
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6526666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.6419071669071669
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.52
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.23333333333333336
name: Dot Precision@3
- type: dot_precision@5
value: 0.17599999999999993
name: Dot Precision@5
- type: dot_precision@10
value: 0.10599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.18391269841269842
name: Dot Recall@1
- type: dot_recall@3
value: 0.30518253968253967
name: Dot Recall@3
- type: dot_recall@5
value: 0.37670634920634916
name: Dot Recall@5
- type: dot_recall@10
value: 0.47370634920634913
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.38850010242023175
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4707460317460317
name: Dot Mrr@10
- type: dot_map@100
value: 0.3248412848822558
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.74
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.88
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.74
name: Dot Precision@1
- type: dot_precision@3
value: 0.37999999999999984
name: Dot Precision@3
- type: dot_precision@5
value: 0.256
name: Dot Precision@5
- type: dot_precision@10
value: 0.142
name: Dot Precision@10
- type: dot_recall@1
value: 0.37
name: Dot Recall@1
- type: dot_recall@3
value: 0.57
name: Dot Recall@3
- type: dot_recall@5
value: 0.64
name: Dot Recall@5
- type: dot_recall@10
value: 0.71
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6641341464635651
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7923333333333333
name: Dot Mrr@10
- type: dot_map@100
value: 0.5975783218818589
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.2
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.32
name: Dot Recall@1
- type: dot_recall@3
value: 0.6
name: Dot Recall@3
- type: dot_recall@5
value: 0.7
name: Dot Recall@5
- type: dot_recall@10
value: 0.82
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5580216131954555
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.47502380952380946
name: Dot Mrr@10
- type: dot_map@100
value: 0.48536594051110177
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.54
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.56
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.32666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.3
name: Dot Precision@5
- type: dot_precision@10
value: 0.23800000000000004
name: Dot Precision@10
- type: dot_recall@1
value: 0.040931301515821
name: Dot Recall@1
- type: dot_recall@3
value: 0.07053120918183034
name: Dot Recall@3
- type: dot_recall@5
value: 0.09088994062974395
name: Dot Recall@5
- type: dot_recall@10
value: 0.1156589880572893
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2972257598049526
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.44519047619047614
name: Dot Mrr@10
- type: dot_map@100
value: 0.12826395582499595
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.62
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.21333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.15200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.35
name: Dot Recall@1
- type: dot_recall@3
value: 0.59
name: Dot Recall@3
- type: dot_recall@5
value: 0.69
name: Dot Recall@5
- type: dot_recall@10
value: 0.75
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5725986299850336
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5327142857142857
name: Dot Mrr@10
- type: dot_map@100
value: 0.514071091036335
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.76
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.86
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.92
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.76
name: Dot Precision@1
- type: dot_precision@3
value: 0.33333333333333326
name: Dot Precision@3
- type: dot_precision@5
value: 0.21599999999999994
name: Dot Precision@5
- type: dot_precision@10
value: 0.12799999999999997
name: Dot Precision@10
- type: dot_recall@1
value: 0.6673333333333333
name: Dot Recall@1
- type: dot_recall@3
value: 0.8079999999999999
name: Dot Recall@3
- type: dot_recall@5
value: 0.8613333333333333
name: Dot Recall@5
- type: dot_recall@10
value: 0.966
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.841867853215048
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8272460317460317
name: Dot Mrr@10
- type: dot_map@100
value: 0.7951434565434564
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.62
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.66
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.28
name: Dot Precision@3
- type: dot_precision@5
value: 0.236
name: Dot Precision@5
- type: dot_precision@10
value: 0.174
name: Dot Precision@10
- type: dot_recall@1
value: 0.07566666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.17266666666666666
name: Dot Recall@3
- type: dot_recall@5
value: 0.24166666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.35666666666666663
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.33289046907153425
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5092936507936507
name: Dot Mrr@10
- type: dot_map@100
value: 0.2530417035110073
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.18666666666666668
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.22
name: Dot Recall@1
- type: dot_recall@3
value: 0.56
name: Dot Recall@3
- type: dot_recall@5
value: 0.7
name: Dot Recall@5
- type: dot_recall@10
value: 0.82
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5149698384079933
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4176904761904761
name: Dot Mrr@10
- type: dot_map@100
value: 0.4241184371184371
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.2333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.16
name: Dot Precision@5
- type: dot_precision@10
value: 0.09
name: Dot Precision@10
- type: dot_recall@1
value: 0.425
name: Dot Recall@1
- type: dot_recall@3
value: 0.63
name: Dot Recall@3
- type: dot_recall@5
value: 0.7
name: Dot Recall@5
- type: dot_recall@10
value: 0.79
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6152484517716852
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5620793650793651
name: Dot Mrr@10
- type: dot_map@100
value: 0.563195436355978
name: Dot Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.6122448979591837
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8571428571428571
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8979591836734694
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9591836734693877
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6122448979591837
name: Dot Precision@1
- type: dot_precision@3
value: 0.5918367346938777
name: Dot Precision@3
- type: dot_precision@5
value: 0.5142857142857142
name: Dot Precision@5
- type: dot_precision@10
value: 0.44285714285714284
name: Dot Precision@10
- type: dot_recall@1
value: 0.043460752262081716
name: Dot Recall@1
- type: dot_recall@3
value: 0.12859741651843118
name: Dot Recall@3
- type: dot_recall@5
value: 0.17924500279536645
name: Dot Recall@5
- type: dot_recall@10
value: 0.29401927639301495
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5011253143808486
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7391399416909621
name: Dot Mrr@10
- type: dot_map@100
value: 0.3876386317128788
name: Dot Map@100
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.45786499215070653
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6643956043956045
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7413814756671899
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8307064364207223
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.45786499215070653
name: Dot Precision@1
- type: dot_precision@3
value: 0.30347462061747776
name: Dot Precision@3
- type: dot_precision@5
value: 0.2370989010989011
name: Dot Precision@5
- type: dot_precision@10
value: 0.16898901098901098
name: Dot Precision@10
- type: dot_recall@1
value: 0.25382107614306887
name: Dot Recall@1
- type: dot_recall@3
value: 0.42946558425335335
name: Dot Recall@3
- type: dot_recall@5
value: 0.49915669459994827
name: Dot Recall@5
- type: dot_recall@10
value: 0.5891955911706602
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5225139794763322
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5784741347088285
name: Dot Mrr@10
- type: dot_map@100
value: 0.43885993672044354
name: Dot Map@100
SparseEncoder
This is a Sparse Encoder model trained on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 50368-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: Sparse Encoder
- Maximum Sequence Length: 512 tokens
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("sparse-embedding/splade-ModernBERT-nq-fresh-lq0.05-lc0.003_scale1_lr-1e-4_bs64")
# Run inference
sentences = [
'is send in the clowns from a musical',
'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 50368)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.22 | 0.66 | 0.48 | 0.38 | 0.74 | 0.32 | 0.38 | 0.38 | 0.76 | 0.36 | 0.22 | 0.44 | 0.6122 |
dot_accuracy@3 | 0.46 | 0.76 | 0.82 | 0.52 | 0.8 | 0.6 | 0.5 | 0.62 | 0.86 | 0.62 | 0.56 | 0.66 | 0.8571 |
dot_accuracy@5 | 0.56 | 0.84 | 0.88 | 0.6 | 0.88 | 0.7 | 0.54 | 0.74 | 0.92 | 0.66 | 0.7 | 0.72 | 0.898 |
dot_accuracy@10 | 0.72 | 0.94 | 0.92 | 0.7 | 0.92 | 0.82 | 0.56 | 0.8 | 1.0 | 0.84 | 0.82 | 0.8 | 0.9592 |
dot_precision@1 | 0.22 | 0.66 | 0.48 | 0.38 | 0.74 | 0.32 | 0.38 | 0.38 | 0.76 | 0.36 | 0.22 | 0.44 | 0.6122 |
dot_precision@3 | 0.16 | 0.5267 | 0.28 | 0.2333 | 0.38 | 0.2 | 0.3267 | 0.2133 | 0.3333 | 0.28 | 0.1867 | 0.2333 | 0.5918 |
dot_precision@5 | 0.124 | 0.488 | 0.18 | 0.176 | 0.256 | 0.14 | 0.3 | 0.152 | 0.216 | 0.236 | 0.14 | 0.16 | 0.5143 |
dot_precision@10 | 0.086 | 0.448 | 0.094 | 0.106 | 0.142 | 0.082 | 0.238 | 0.084 | 0.128 | 0.174 | 0.082 | 0.09 | 0.4429 |
dot_recall@1 | 0.0667 | 0.0667 | 0.47 | 0.1839 | 0.37 | 0.32 | 0.0409 | 0.35 | 0.6673 | 0.0757 | 0.22 | 0.425 | 0.0435 |
dot_recall@3 | 0.2383 | 0.1197 | 0.79 | 0.3052 | 0.57 | 0.6 | 0.0705 | 0.59 | 0.808 | 0.1727 | 0.56 | 0.63 | 0.1286 |
dot_recall@5 | 0.28 | 0.1792 | 0.85 | 0.3767 | 0.64 | 0.7 | 0.0909 | 0.69 | 0.8613 | 0.2417 | 0.7 | 0.7 | 0.1792 |
dot_recall@10 | 0.37 | 0.3035 | 0.89 | 0.4737 | 0.71 | 0.82 | 0.1157 | 0.75 | 0.966 | 0.3567 | 0.82 | 0.79 | 0.294 |
dot_ndcg@10 | 0.2677 | 0.5343 | 0.7041 | 0.3885 | 0.6641 | 0.558 | 0.2972 | 0.5726 | 0.8419 | 0.3329 | 0.515 | 0.6152 | 0.5011 |
dot_mrr@10 | 0.3606 | 0.7355 | 0.6527 | 0.4707 | 0.7923 | 0.475 | 0.4452 | 0.5327 | 0.8272 | 0.5093 | 0.4177 | 0.5621 | 0.7391 |
dot_map@100 | 0.1851 | 0.4049 | 0.6419 | 0.3248 | 0.5976 | 0.4854 | 0.1283 | 0.5141 | 0.7951 | 0.253 | 0.4241 | 0.5632 | 0.3876 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4579 |
dot_accuracy@3 | 0.6644 |
dot_accuracy@5 | 0.7414 |
dot_accuracy@10 | 0.8307 |
dot_precision@1 | 0.4579 |
dot_precision@3 | 0.3035 |
dot_precision@5 | 0.2371 |
dot_precision@10 | 0.169 |
dot_recall@1 | 0.2538 |
dot_recall@3 | 0.4295 |
dot_recall@5 | 0.4992 |
dot_recall@10 | 0.5892 |
dot_ndcg@10 | 0.5225 |
dot_mrr@10 | 0.5785 |
dot_map@100 | 0.4389 |
Training Details
Training Dataset
natural-questions
- Dataset: natural-questions at f9e894e
- Size: 99,000 training samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 29 characters
- mean: 46.96 characters
- max: 93 characters
- min: 10 characters
- mean: 582.13 characters
- max: 2141 characters
- Samples:
query answer who played the father in papa don't preach
Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
where was the location of the battle of hastings
Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
how many puppies can a dog give birth to
Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
- Loss:
SpladeLoss
with these parameters:{'lambda_corpus': 0.003, 'lambda_query': 0.05, 'main_loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() )}
Evaluation Dataset
natural-questions
- Dataset: natural-questions at f9e894e
- Size: 1,000 evaluation samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 30 characters
- mean: 47.2 characters
- max: 96 characters
- min: 58 characters
- mean: 598.96 characters
- max: 2480 characters
- Samples:
query answer where is the tiber river located in italy
Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
what kind of car does jay gatsby drive
Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
who sings if i can dream about you
I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
- Loss:
SpladeLoss
with these parameters:{'lambda_corpus': 0.003, 'lambda_query': 0.05, 'main_loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() )}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 0.0001num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0065 | 10 | 7184.1445 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0129 | 20 | 1903.0385 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0194 | 30 | 909.2298 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0259 | 40 | 316.7136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0323 | 50 | 244.4539 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0388 | 60 | 294.2571 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0452 | 70 | 353.676 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0517 | 80 | 152.3629 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0582 | 90 | 104.8372 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0646 | 100 | 45.3187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0711 | 110 | 22.4178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0776 | 120 | 13.1608 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0840 | 130 | 8.5385 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0905 | 140 | 6.384 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0970 | 150 | 4.6373 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1034 | 160 | 4.4281 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1099 | 170 | 3.8958 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1164 | 180 | 2.9138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1228 | 190 | 2.0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1293 | 200 | 1.3596 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1357 | 210 | 0.931 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1422 | 220 | 0.8304 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1487 | 230 | 0.5943 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1551 | 240 | 0.4164 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1616 | 250 | 0.3703 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1681 | 260 | 0.3452 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1745 | 270 | 0.3224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1810 | 280 | 0.2795 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1875 | 290 | 0.2597 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1939 | 300 | 0.3003 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1997 | 309 | - | 0.2614 | 0.2510 | 0.4642 | 0.7084 | 0.2488 | 0.5736 | 0.4460 | 0.2437 | 0.3954 | 0.6417 | 0.2529 | 0.3068 | 0.5133 | 0.3905 | 0.4182 |
0.2004 | 310 | 0.2549 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2069 | 320 | 0.2208 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2133 | 330 | 0.215 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2198 | 340 | 0.2113 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2262 | 350 | 0.198 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2327 | 360 | 0.2177 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2392 | 370 | 0.3034 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2456 | 380 | 0.2184 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2521 | 390 | 0.211 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2586 | 400 | 0.1726 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2650 | 410 | 0.1745 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2715 | 420 | 0.1978 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2780 | 430 | 0.1966 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2844 | 440 | 0.1961 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2909 | 450 | 0.1705 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2973 | 460 | 0.2358 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3038 | 470 | 0.1643 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3103 | 480 | 0.1824 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3167 | 490 | 0.2357 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3232 | 500 | 0.1341 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3297 | 510 | 0.1786 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3361 | 520 | 0.1392 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3426 | 530 | 0.1434 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3491 | 540 | 0.1684 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3555 | 550 | 0.1827 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3620 | 560 | 0.1296 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3685 | 570 | 0.1731 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3749 | 580 | 0.182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3814 | 590 | 0.1587 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3878 | 600 | 0.1519 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3943 | 610 | 0.1944 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3995 | 618 | - | 0.1768 | 0.2776 | 0.4818 | 0.7670 | 0.3444 | 0.5941 | 0.4696 | 0.2791 | 0.5422 | 0.7823 | 0.2977 | 0.4389 | 0.5579 | 0.4978 | 0.4869 |
0.4008 | 620 | 0.1778 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4072 | 630 | 0.1595 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4137 | 640 | 0.1268 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4202 | 650 | 0.1361 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4266 | 660 | 0.1416 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4331 | 670 | 0.1139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4396 | 680 | 0.1734 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4460 | 690 | 0.1082 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4525 | 700 | 0.1198 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4590 | 710 | 0.0981 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4654 | 720 | 0.0943 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4719 | 730 | 0.1421 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4783 | 740 | 0.0903 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4848 | 750 | 0.1339 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4913 | 760 | 0.1109 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4977 | 770 | 0.1245 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5042 | 780 | 0.0949 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5107 | 790 | 0.0954 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5171 | 800 | 0.1136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5236 | 810 | 0.1206 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5301 | 820 | 0.101 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5365 | 830 | 0.1372 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5430 | 840 | 0.1123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5495 | 850 | 0.1358 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5559 | 860 | 0.1303 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5624 | 870 | 0.1339 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5688 | 880 | 0.1096 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5753 | 890 | 0.079 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5818 | 900 | 0.0988 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5882 | 910 | 0.1042 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5947 | 920 | 0.0905 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5992 | 927 | - | 0.1155 | 0.2490 | 0.5054 | 0.7070 | 0.3375 | 0.6075 | 0.4871 | 0.2843 | 0.5344 | 0.7616 | 0.3309 | 0.4869 | 0.6136 | 0.4983 | 0.4926 |
0.6012 | 930 | 0.0841 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6076 | 940 | 0.0946 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6141 | 950 | 0.086 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6206 | 960 | 0.118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6270 | 970 | 0.0981 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6335 | 980 | 0.117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6399 | 990 | 0.0984 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6464 | 1000 | 0.1235 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6529 | 1010 | 0.1026 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6593 | 1020 | 0.0919 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6658 | 1030 | 0.0891 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6723 | 1040 | 0.1363 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6787 | 1050 | 0.0765 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6852 | 1060 | 0.0918 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6917 | 1070 | 0.1433 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6981 | 1080 | 0.076 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7046 | 1090 | 0.0851 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7111 | 1100 | 0.0811 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7175 | 1110 | 0.0775 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7240 | 1120 | 0.1029 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7304 | 1130 | 0.104 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7369 | 1140 | 0.0961 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7434 | 1150 | 0.1159 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7498 | 1160 | 0.0919 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7563 | 1170 | 0.0849 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7628 | 1180 | 0.1021 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7692 | 1190 | 0.065 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7757 | 1200 | 0.0858 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7822 | 1210 | 0.0826 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7886 | 1220 | 0.069 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7951 | 1230 | 0.0718 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.799 | 1236 | - | 0.0956 | 0.2677 | 0.5343 | 0.7041 | 0.3885 | 0.6641 | 0.558 | 0.2972 | 0.5726 | 0.8419 | 0.3329 | 0.515 | 0.6152 | 0.5011 | 0.5225 |
0.8016 | 1240 | 0.076 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8080 | 1250 | 0.0703 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8145 | 1260 | 0.0615 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8209 | 1270 | 0.0969 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8274 | 1280 | 0.104 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8339 | 1290 | 0.0616 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8403 | 1300 | 0.0752 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8468 | 1310 | 0.0762 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8533 | 1320 | 0.0691 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8597 | 1330 | 0.102 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8662 | 1340 | 0.0778 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8727 | 1350 | 0.0619 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8791 | 1360 | 0.0865 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8856 | 1370 | 0.0546 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8920 | 1380 | 0.0705 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8985 | 1390 | 0.0713 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9050 | 1400 | 0.0669 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9114 | 1410 | 0.0742 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9179 | 1420 | 0.0714 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9244 | 1430 | 0.0753 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9308 | 1440 | 0.0536 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9373 | 1450 | 0.0765 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9438 | 1460 | 0.0665 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9502 | 1470 | 0.0736 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9567 | 1480 | 0.0559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9632 | 1490 | 0.0587 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9696 | 1500 | 0.0798 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9761 | 1510 | 0.0819 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9825 | 1520 | 0.1039 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9890 | 1530 | 0.0617 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9955 | 1540 | 0.062 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9987 | 1545 | - | 0.0789 | 0.2818 | 0.5012 | 0.6833 | 0.3634 | 0.5937 | 0.5268 | 0.2913 | 0.5805 | 0.8237 | 0.3454 | 0.5020 | 0.6028 | 0.4961 | 0.5071 |
1 | -1 | - | - | 0.2677 | 0.5343 | 0.7041 | 0.3885 | 0.6641 | 0.5580 | 0.2972 | 0.5726 | 0.8419 | 0.3329 | 0.5150 | 0.6152 | 0.5011 | 0.5225 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.48.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@inproceedings{10.1145/3477495.3531857,
author = {Formal, Thibault and Lassance, Carlos and Piwowarski, Benjamin and Clinchant, St'{e}phane},
title = {From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
year = {2022},
isbn = {9781450387323},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3477495.3531857},
doi = {10.1145/3477495.3531857},
abstract = {Neural retrievers based on dense representations combined with Approximate Nearest Neighbors search have recently received a lot of attention, owing their success to distillation and/or better sampling of examples for training -- while still relying on the same backbone architecture. In the meantime, sparse representation learning fueled by traditional inverted indexing techniques has seen a growing interest, inheriting from desirable IR priors such as explicit lexical matching. While some architectural variants have been proposed, a lesser effort has been put in the training of such models. In this work, we build on SPLADE -- a sparse expansion-based retriever -- and show to which extent it is able to benefit from the same training improvements as dense models, by studying the effect of distillation, hard-negative mining as well as the Pre-trained Language Model initialization. We furthermore study the link between effectiveness and efficiency, on in-domain and zero-shot settings, leading to state-of-the-art results in both scenarios for sufficiently expressive models.},
booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {2353–2359},
numpages = {7},
keywords = {neural networks, indexing, sparse representations, regularization},
location = {Madrid, Spain},
series = {SIGIR '22}
}
}