tts-v1-finetuned / README.md
mhenrichsen's picture
Upload folder using huggingface_hub
a4b92b8 verified
metadata
library_name: transformers
base_model: syvai/tts-v1-pretrained
tags:
  - axolotl
  - generated_from_trainer
datasets:
  - syvai/zac-coral-tts
model-index:
  - name: tts-v1-finetuned
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.8.0

base_model: syvai/tts-v1-pretrained
# Automatically upload checkpoint and final model to HF
hub_model_id: syvai/tts-v1-finetuned

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

datasets:
  - path: syvai/zac-coral-tts
    type: 
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
eval_sample_packing: False
output_dir: ./outputs/finetuned

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project: orph
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-5

bf16: auto
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_steps: 3
evals_per_epoch: 5
saves_per_epoch: 5
weight_decay: 0.05

special_tokens:
  pad_token: <custom_token_7>

tts-v1-finetuned

This model is a fine-tuned version of syvai/tts-v1-pretrained on the syvai/zac-coral-tts dataset. It achieves the following results on the evaluation set:

  • Loss: 4.2860

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 3
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
4.9492 0.0246 1 4.8478
4.7181 0.1969 8 4.5872
4.5871 0.3938 16 4.4631
4.557 0.5908 24 4.3972
4.4965 0.7877 32 4.3521
4.4697 0.9846 40 4.3258
4.4525 1.1723 48 4.3083
4.4301 1.3692 56 4.2980
4.4459 1.5662 64 4.2915
4.4382 1.7631 72 4.2893
4.4315 1.96 80 4.2866
4.4178 2.1477 88 4.2861
4.4501 2.3446 96 4.2859
4.4121 2.5415 104 4.2856
4.4164 2.7385 112 4.2859
4.4264 2.9354 120 4.2860

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1