spcc-finetuned / README.md
tdm503's picture
Upload folder using huggingface_hub
81fdd87 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1615
  - loss:TripletLoss
base_model: cl-nagoya/ruri-large
widget:
  - source_sentence: 工事キャンセル日を変更したい
    sentences:
      - 工事予定キャンセルしたため日程変更手続き希望
      - 予定キャンセルした工事日を再調整希望
      - 新規工事日を早めてほしい
  - source_sentence: 無料体験アンテナマークが30分経っても消えない
    sentences:
      - アンテナ方向狂いでスカパー映像が出ない
      - 体験マークが左下に居座り続ける
      - 有料契約アイコンが表示されない
  - source_sentence: 時計表示消失
    sentences:
      - 音声ミュート
      - アンテナ老朽化でプレミアムサービス映像が映らなくなる
      - 液晶表示消灯
  - source_sentence: バックアップ後に体験アンテナマークが残る
    sentences:
      - ソフトバックアップ後、左下の無料体験マークが30分経っても消えない
      - 画面右にエラーコードが出る
      - 無料アンテナマーク
  - source_sentence: 引越しでアンテナ外して
    sentences:
      - 引っ越しに伴いアンテナ取り外しのみ依頼
      - 引越し先で新規アンテナ設置を依頼
      - 予約取り消し
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
model-index:
  - name: SPCC
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: spcc
          type: spcc
        metrics:
          - type: cosine_accuracy
            value: 0.9876237511634827
            name: Cosine Accuracy

SPCC

This is a sentence-transformers model finetuned from cl-nagoya/ruri-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: cl-nagoya/ruri-large
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '引越しでアンテナ外して',
    '引っ越しに伴いアンテナ取り外しのみ依頼',
    '引越し先で新規アンテナ設置を依頼',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.9876

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,615 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 3 tokens
    • mean: 7.8 tokens
    • max: 20 tokens
    • min: 4 tokens
    • mean: 9.32 tokens
    • max: 20 tokens
    • min: 3 tokens
    • mean: 8.2 tokens
    • max: 20 tokens
  • Samples:
    anchor positive negative
    アンテナ向きがズレてスカパー映らない アンテナ方向が狂い視聴できない テレビ本体の電源が落ちて映らない
    ICカード無いせいでプレミアム見れない ICカード未申請で一部チャンネル視聴不可 チューナー故障で全チャンネル映らない
    SONYチューナー壊れて受信不能 SONY製チューナー不具合で映像来ない BSアンテナ設置ミスで映らない
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.COSINE",
        "triplet_margin": 0.25
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • fp16: True
  • dataloader_drop_last: True
  • remove_unused_columns: False
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: False
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss spcc_cosine_accuracy
-1 -1 - 0.9059
0.2 10 0.1661 -
0.4 20 0.0568 -
0.6 30 0.0299 -
0.8 40 0.022 -
1.02 50 0.0249 0.9851
1.22 60 0.0081 -
1.42 70 0.0072 -
1.62 80 0.0074 -
1.8200 90 0.0071 -
2.04 100 0.0062 0.9851
2.24 110 0.0084 -
2.44 120 0.0035 -
2.64 130 0.0034 -
2.84 140 0.0018 -
0.2 10 0.0023 -
0.4 20 0.0007 -
0.6 30 0.0012 -
0.8 40 0.0043 -
1.02 50 0.0058 0.9876
1.22 60 0.0005 -
1.42 70 0.0025 -
1.62 80 0.0011 -
1.8200 90 0.0026 -
2.04 100 0.0026 0.9876
2.24 110 0.0021 -
2.44 120 0.0015 -
2.64 130 0.0019 -
2.84 140 0.0 -
0.2 10 0.0003 -
0.4 20 0.0001 -
0.6 30 0.0006 -
0.8 40 0.0026 -
1.02 50 0.0018 0.9876
1.22 60 0.0007 -
1.42 70 0.0019 -
1.62 80 0.0006 -
1.8200 90 0.0011 -
2.04 100 0.0012 0.9876
2.24 110 0.0003 -
2.44 120 0.0 -
2.64 130 0.0014 -
2.84 140 0.0 -
-1 -1 - 0.9876

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}