|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1615 |
|
- loss:TripletLoss |
|
base_model: cl-nagoya/ruri-large |
|
widget: |
|
- source_sentence: 工事キャンセル日を変更したい |
|
sentences: |
|
- 工事予定キャンセルしたため日程変更手続き希望 |
|
- 予定キャンセルした工事日を再調整希望 |
|
- 新規工事日を早めてほしい |
|
- source_sentence: 無料体験アンテナマークが30分経っても消えない |
|
sentences: |
|
- アンテナ方向狂いでスカパー映像が出ない |
|
- 体験マークが左下に居座り続ける |
|
- 有料契約アイコンが表示されない |
|
- source_sentence: 時計表示消失 |
|
sentences: |
|
- 音声ミュート |
|
- アンテナ老朽化でプレミアムサービス映像が映らなくなる |
|
- 液晶表示消灯 |
|
- source_sentence: バックアップ後に体験アンテナマークが残る |
|
sentences: |
|
- ソフトバックアップ後、左下の無料体験マークが30分経っても消えない |
|
- 画面右にエラーコードが出る |
|
- 無料アンテナマーク |
|
- source_sentence: 引越しでアンテナ外して |
|
sentences: |
|
- 引っ越しに伴いアンテナ取り外しのみ依頼 |
|
- 引越し先で新規アンテナ設置を依頼 |
|
- 予約取り消し |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
model-index: |
|
- name: SPCC |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: spcc |
|
type: spcc |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9876237511634827 |
|
name: Cosine Accuracy |
|
--- |
|
|
|
# SPCC |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cl-nagoya/ruri-large](https://huggingface.co/cl-nagoya/ruri-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [cl-nagoya/ruri-large](https://huggingface.co/cl-nagoya/ruri-large) <!-- at revision a011c39b13e8bc137ee13c6bc82191ece46c414c --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'引越しでアンテナ外して', |
|
'引っ越しに伴いアンテナ取り外しのみ依頼', |
|
'引越し先で新規アンテナ設置を依頼', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
|
|
* Dataset: `spcc` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| **cosine_accuracy** | **0.9876** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 1,615 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 7.8 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.32 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.2 tokens</li><li>max: 20 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:---------------------------------|:----------------------------------|:--------------------------------| |
|
| <code>アンテナ向きがズレてスカパー映らない</code> | <code>アンテナ方向が狂い視聴できない</code> | <code>テレビ本体の電源が落ちて映らない</code> | |
|
| <code>ICカード無いせいでプレミアム見れない</code> | <code>ICカード未申請で一部チャンネル視聴不可</code> | <code>チューナー故障で全チャンネル映らない</code> | |
|
| <code>SONYチューナー壊れて受信不能</code> | <code>SONY製チューナー不具合で映像来ない</code> | <code>BSアンテナ設置ミスで映らない</code> | |
|
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: |
|
```json |
|
{ |
|
"distance_metric": "TripletDistanceMetric.COSINE", |
|
"triplet_margin": 0.25 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `dataloader_drop_last`: True |
|
- `remove_unused_columns`: False |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: True |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: False |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | spcc_cosine_accuracy | |
|
|:------:|:----:|:-------------:|:--------------------:| |
|
| -1 | -1 | - | 0.9059 | |
|
| 0.2 | 10 | 0.1661 | - | |
|
| 0.4 | 20 | 0.0568 | - | |
|
| 0.6 | 30 | 0.0299 | - | |
|
| 0.8 | 40 | 0.022 | - | |
|
| 1.02 | 50 | 0.0249 | 0.9851 | |
|
| 1.22 | 60 | 0.0081 | - | |
|
| 1.42 | 70 | 0.0072 | - | |
|
| 1.62 | 80 | 0.0074 | - | |
|
| 1.8200 | 90 | 0.0071 | - | |
|
| 2.04 | 100 | 0.0062 | 0.9851 | |
|
| 2.24 | 110 | 0.0084 | - | |
|
| 2.44 | 120 | 0.0035 | - | |
|
| 2.64 | 130 | 0.0034 | - | |
|
| 2.84 | 140 | 0.0018 | - | |
|
| 0.2 | 10 | 0.0023 | - | |
|
| 0.4 | 20 | 0.0007 | - | |
|
| 0.6 | 30 | 0.0012 | - | |
|
| 0.8 | 40 | 0.0043 | - | |
|
| 1.02 | 50 | 0.0058 | 0.9876 | |
|
| 1.22 | 60 | 0.0005 | - | |
|
| 1.42 | 70 | 0.0025 | - | |
|
| 1.62 | 80 | 0.0011 | - | |
|
| 1.8200 | 90 | 0.0026 | - | |
|
| 2.04 | 100 | 0.0026 | 0.9876 | |
|
| 2.24 | 110 | 0.0021 | - | |
|
| 2.44 | 120 | 0.0015 | - | |
|
| 2.64 | 130 | 0.0019 | - | |
|
| 2.84 | 140 | 0.0 | - | |
|
| 0.2 | 10 | 0.0003 | - | |
|
| 0.4 | 20 | 0.0001 | - | |
|
| 0.6 | 30 | 0.0006 | - | |
|
| 0.8 | 40 | 0.0026 | - | |
|
| 1.02 | 50 | 0.0018 | 0.9876 | |
|
| 1.22 | 60 | 0.0007 | - | |
|
| 1.42 | 70 | 0.0019 | - | |
|
| 1.62 | 80 | 0.0006 | - | |
|
| 1.8200 | 90 | 0.0011 | - | |
|
| 2.04 | 100 | 0.0012 | 0.9876 | |
|
| 2.24 | 110 | 0.0003 | - | |
|
| 2.44 | 120 | 0.0 | - | |
|
| 2.64 | 130 | 0.0014 | - | |
|
| 2.84 | 140 | 0.0 | - | |
|
| -1 | -1 | - | 0.9876 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.13 |
|
- Sentence Transformers: 4.1.0 |
|
- Transformers: 4.52.4 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.8.1 |
|
- Datasets: 3.6.0 |
|
- Tokenizers: 0.21.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### TripletLoss |
|
```bibtex |
|
@misc{hermans2017defense, |
|
title={In Defense of the Triplet Loss for Person Re-Identification}, |
|
author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, |
|
year={2017}, |
|
eprint={1703.07737}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |