Built with Axolotl

See axolotl config

axolotl version: 0.9.2

base_model: timarni/qwen3-0.6B-mmlu-alpaca
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false

chat_template: qwen3
datasets:
  - path: timarni/sciq_alpaca
    type: alpaca
    split: train

val_set_size: 0.15
output_dir: ./outputs/qwen3_mmlu_sciq_alpaca
dataset_prepared_path: last_run_prepared

sequence_len: 4096 #2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false

wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3-0.6B-mmlu-sciq
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00005 # 0.0002

bf16: auto
tf32: true

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:

outputs/qwen3_mmlu_sciq_alpaca

This model is a fine-tuned version of timarni/qwen3-0.6B-mmlu-alpaca on the timarni/sciq_alpaca dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0583

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
0.149 0.0127 1 0.0983
0.0755 0.2532 20 0.0744
0.0678 0.5063 40 0.0625
0.0564 0.7595 60 0.0583

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
596M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for timarni/qwen3-0.6B-mmlu-sciq

Finetuned
(2)
this model

Dataset used to train timarni/qwen3-0.6B-mmlu-sciq