tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
baa6396 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - csr
  - generated_from_trainer
  - dataset_size:99000
  - loss:CSRLoss
  - loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 42.81821457704325
  energy_consumed: 0.11015691860871116
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.274
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Sparse CSR model trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 4
          type: nq_eval_4
        metrics:
          - type: cosine_accuracy@1
            value: 0.341
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.53
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.616
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.71
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.341
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1766666666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.12319999999999999
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.071
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.341
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.53
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.616
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.71
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5177559532868556
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4569571428571428
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.46808238304226085
            name: Cosine Map@100
          - type: query_active_dims
            value: 4
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9990234375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 4
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9990234375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 8
          type: nq_eval_8
        metrics:
          - type: cosine_accuracy@1
            value: 0.479
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.683
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.743
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.827
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.479
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.22766666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14859999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08270000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.479
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.683
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.743
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.827
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6514732993360963
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5954253968253969
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.602459158736598
            name: Cosine Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 16
          type: nq_eval_16
        metrics:
          - type: cosine_accuracy@1
            value: 0.61
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.792
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.843
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.61
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.264
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16860000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.61
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.792
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.843
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7573375805688765
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7114896825396828
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7159603693257915
            name: Cosine Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 32
          type: nq_eval_32
        metrics:
          - type: cosine_accuracy@1
            value: 0.739
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.871
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.899
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.936
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.739
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2903333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17980000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0936
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.739
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.871
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.899
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.936
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8407099394827843
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8098075396825399
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8124255549328265
            name: Cosine Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 64
          type: nq_eval_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.775
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.895
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.925
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.951
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.775
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2983333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.18500000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0951
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.775
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.895
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.925
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.951
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8672657281787072
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8399420634920639
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8417827624389276
            name: Cosine Map@100
          - type: query_active_dims
            value: 63.992000579833984
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984376952983439
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 128
          type: nq_eval_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.797
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.901
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.933
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.951
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.797
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.30033333333333334
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.18660000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0951
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.797
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.901
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.933
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.951
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8780719613731008
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8541857142857148
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8561013158199787
            name: Cosine Map@100
          - type: query_active_dims
            value: 119.21700286865234
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9708942864090204
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 119.6520004272461
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9707880858331919
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 256
          type: nq_eval_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.8
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.901
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.933
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.951
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.30033333333333334
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.18660000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0951
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.901
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.933
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.951
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8788975201919854
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8553369047619053
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8573055135070745
            name: Cosine Map@100
          - type: query_active_dims
            value: 133.42999267578125
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9674243181943893
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 129.16900634765625
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9684645980596542
            name: Corpus Sparsity Ratio

Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-5-gamma-1-detach-2")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.8907, 0.0410, 0.0237]])

Evaluation

Metrics

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.341
cosine_accuracy@3 0.53
cosine_accuracy@5 0.616
cosine_accuracy@10 0.71
cosine_precision@1 0.341
cosine_precision@3 0.1767
cosine_precision@5 0.1232
cosine_precision@10 0.071
cosine_recall@1 0.341
cosine_recall@3 0.53
cosine_recall@5 0.616
cosine_recall@10 0.71
cosine_ndcg@10 0.5178
cosine_mrr@10 0.457
cosine_map@100 0.4681
query_active_dims 4.0
query_sparsity_ratio 0.999
corpus_active_dims 4.0
corpus_sparsity_ratio 0.999

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.479
cosine_accuracy@3 0.683
cosine_accuracy@5 0.743
cosine_accuracy@10 0.827
cosine_precision@1 0.479
cosine_precision@3 0.2277
cosine_precision@5 0.1486
cosine_precision@10 0.0827
cosine_recall@1 0.479
cosine_recall@3 0.683
cosine_recall@5 0.743
cosine_recall@10 0.827
cosine_ndcg@10 0.6515
cosine_mrr@10 0.5954
cosine_map@100 0.6025
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.61
cosine_accuracy@3 0.792
cosine_accuracy@5 0.843
cosine_accuracy@10 0.9
cosine_precision@1 0.61
cosine_precision@3 0.264
cosine_precision@5 0.1686
cosine_precision@10 0.09
cosine_recall@1 0.61
cosine_recall@3 0.792
cosine_recall@5 0.843
cosine_recall@10 0.9
cosine_ndcg@10 0.7573
cosine_mrr@10 0.7115
cosine_map@100 0.716
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.739
cosine_accuracy@3 0.871
cosine_accuracy@5 0.899
cosine_accuracy@10 0.936
cosine_precision@1 0.739
cosine_precision@3 0.2903
cosine_precision@5 0.1798
cosine_precision@10 0.0936
cosine_recall@1 0.739
cosine_recall@3 0.871
cosine_recall@5 0.899
cosine_recall@10 0.936
cosine_ndcg@10 0.8407
cosine_mrr@10 0.8098
cosine_map@100 0.8124
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.775
cosine_accuracy@3 0.895
cosine_accuracy@5 0.925
cosine_accuracy@10 0.951
cosine_precision@1 0.775
cosine_precision@3 0.2983
cosine_precision@5 0.185
cosine_precision@10 0.0951
cosine_recall@1 0.775
cosine_recall@3 0.895
cosine_recall@5 0.925
cosine_recall@10 0.951
cosine_ndcg@10 0.8673
cosine_mrr@10 0.8399
cosine_map@100 0.8418
query_active_dims 63.992
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.797
cosine_accuracy@3 0.901
cosine_accuracy@5 0.933
cosine_accuracy@10 0.951
cosine_precision@1 0.797
cosine_precision@3 0.3003
cosine_precision@5 0.1866
cosine_precision@10 0.0951
cosine_recall@1 0.797
cosine_recall@3 0.901
cosine_recall@5 0.933
cosine_recall@10 0.951
cosine_ndcg@10 0.8781
cosine_mrr@10 0.8542
cosine_map@100 0.8561
query_active_dims 119.217
query_sparsity_ratio 0.9709
corpus_active_dims 119.652
corpus_sparsity_ratio 0.9708

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.8
cosine_accuracy@3 0.901
cosine_accuracy@5 0.933
cosine_accuracy@10 0.951
cosine_precision@1 0.8
cosine_precision@3 0.3003
cosine_precision@5 0.1866
cosine_precision@10 0.0951
cosine_recall@1 0.8
cosine_recall@3 0.901
cosine_recall@5 0.933
cosine_recall@10 0.951
cosine_ndcg@10 0.8789
cosine_mrr@10 0.8553
cosine_map@100 0.8573
query_active_dims 133.43
query_sparsity_ratio 0.9674
corpus_active_dims 129.169
corpus_sparsity_ratio 0.9685

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 1.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 1.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss nq_eval_4_cosine_ndcg@10 nq_eval_8_cosine_ndcg@10 nq_eval_16_cosine_ndcg@10 nq_eval_32_cosine_ndcg@10 nq_eval_64_cosine_ndcg@10 nq_eval_128_cosine_ndcg@10 nq_eval_256_cosine_ndcg@10
-1 -1 - - 0.2566 0.4513 0.6853 0.8617 0.9369 0.9685 0.9757
0.0646 100 2.9836 - - - - - - - -
0.1293 200 2.7758 - - - - - - - -
0.1939 300 2.6386 2.3891 0.4003 0.5884 0.7387 0.8220 0.8695 0.9164 0.9372
0.2586 400 2.5466 - - - - - - - -
0.3232 500 2.4711 - - - - - - - -
0.3878 600 2.3918 2.1817 0.4580 0.6189 0.7230 0.7986 0.8554 0.8939 0.9146
0.4525 700 2.2802 - - - - - - - -
0.5171 800 2.1309 - - - - - - - -
0.5818 900 2.0585 1.8844 0.4932 0.6402 0.7482 0.8361 0.8665 0.8857 0.8895
0.6464 1000 2.0203 - - - - - - - -
0.7111 1100 1.9934 - - - - - - - -
0.7757 1200 1.9734 1.8208 0.5168 0.6452 0.7592 0.8371 0.8690 0.8775 0.8804
0.8403 1300 1.9583 - - - - - - - -
0.9050 1400 1.9496 - - - - - - - -
0.9696 1500 1.9499 1.8020 0.5159 0.6536 0.7568 0.8399 0.8670 0.8785 0.8778
-1 -1 - - 0.5178 0.6515 0.7573 0.8407 0.8673 0.8781 0.8789

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.110 kWh
  • Carbon Emitted: 0.043 kg of CO2
  • Hours Used: 0.274 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}