Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-updated-reconstruction-4")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[111.0676,  23.1031,  22.6751]])

Evaluation

Metrics

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.16
dot_accuracy@3 0.2
dot_accuracy@5 0.28
dot_accuracy@10 0.4
dot_precision@1 0.16
dot_precision@3 0.0667
dot_precision@5 0.056
dot_precision@10 0.04
dot_recall@1 0.16
dot_recall@3 0.2
dot_recall@5 0.28
dot_recall@10 0.4
dot_ndcg@10 0.2553
dot_mrr@10 0.2125
dot_map@100 0.2276
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_8
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 8
    }
    
Metric Value
dot_accuracy@1 0.16
dot_accuracy@3 0.2
dot_accuracy@5 0.28
dot_accuracy@10 0.4
dot_precision@1 0.16
dot_precision@3 0.0667
dot_precision@5 0.056
dot_precision@10 0.04
dot_recall@1 0.16
dot_recall@3 0.2
dot_recall@5 0.28
dot_recall@10 0.4
dot_ndcg@10 0.2553
dot_mrr@10 0.2125
dot_map@100 0.2276
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.24
dot_accuracy@3 0.38
dot_accuracy@5 0.5
dot_accuracy@10 0.58
dot_precision@1 0.24
dot_precision@3 0.1267
dot_precision@5 0.1
dot_precision@10 0.058
dot_recall@1 0.24
dot_recall@3 0.38
dot_recall@5 0.5
dot_recall@10 0.58
dot_ndcg@10 0.3971
dot_mrr@10 0.3401
dot_map@100 0.353
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_16
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 16
    }
    
Metric Value
dot_accuracy@1 0.24
dot_accuracy@3 0.38
dot_accuracy@5 0.5
dot_accuracy@10 0.58
dot_precision@1 0.24
dot_precision@3 0.1267
dot_precision@5 0.1
dot_precision@10 0.058
dot_recall@1 0.24
dot_recall@3 0.38
dot_recall@5 0.5
dot_recall@10 0.58
dot_ndcg@10 0.3971
dot_mrr@10 0.3401
dot_map@100 0.353
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.3
dot_accuracy@3 0.46
dot_accuracy@5 0.62
dot_accuracy@10 0.7
dot_precision@1 0.3
dot_precision@3 0.1533
dot_precision@5 0.124
dot_precision@10 0.07
dot_recall@1 0.3
dot_recall@3 0.46
dot_recall@5 0.62
dot_recall@10 0.7
dot_ndcg@10 0.4873
dot_mrr@10 0.4206
dot_map@100 0.4326
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_32
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 32
    }
    
Metric Value
dot_accuracy@1 0.3
dot_accuracy@3 0.46
dot_accuracy@5 0.62
dot_accuracy@10 0.7
dot_precision@1 0.3
dot_precision@3 0.1533
dot_precision@5 0.124
dot_precision@10 0.07
dot_recall@1 0.3
dot_recall@3 0.46
dot_recall@5 0.62
dot_recall@10 0.7
dot_ndcg@10 0.4873
dot_mrr@10 0.4206
dot_map@100 0.4326
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.42
dot_accuracy@3 0.6
dot_accuracy@5 0.68
dot_accuracy@10 0.78
dot_precision@1 0.42
dot_precision@3 0.2
dot_precision@5 0.136
dot_precision@10 0.078
dot_recall@1 0.42
dot_recall@3 0.6
dot_recall@5 0.68
dot_recall@10 0.78
dot_ndcg@10 0.5911
dot_mrr@10 0.5317
dot_map@100 0.5406
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_64
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 64
    }
    
Metric Value
dot_accuracy@1 0.42
dot_accuracy@3 0.6
dot_accuracy@5 0.68
dot_accuracy@10 0.78
dot_precision@1 0.42
dot_precision@3 0.2
dot_precision@5 0.136
dot_precision@10 0.078
dot_recall@1 0.42
dot_recall@3 0.6
dot_recall@5 0.68
dot_recall@10 0.78
dot_ndcg@10 0.5911
dot_mrr@10 0.5317
dot_map@100 0.5406
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.36
dot_accuracy@3 0.64
dot_accuracy@5 0.72
dot_accuracy@10 0.82
dot_precision@1 0.36
dot_precision@3 0.2133
dot_precision@5 0.144
dot_precision@10 0.082
dot_recall@1 0.36
dot_recall@3 0.64
dot_recall@5 0.72
dot_recall@10 0.82
dot_ndcg@10 0.5877
dot_mrr@10 0.5139
dot_map@100 0.5217
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_128
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 128
    }
    
Metric Value
dot_accuracy@1 0.36
dot_accuracy@3 0.64
dot_accuracy@5 0.72
dot_accuracy@10 0.82
dot_precision@1 0.36
dot_precision@3 0.2133
dot_precision@5 0.144
dot_precision@10 0.082
dot_recall@1 0.36
dot_recall@3 0.64
dot_recall@5 0.72
dot_recall@10 0.82
dot_ndcg@10 0.5877
dot_mrr@10 0.5139
dot_map@100 0.5217
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.42
dot_accuracy@3 0.64
dot_accuracy@5 0.74
dot_accuracy@10 0.82
dot_precision@1 0.42
dot_precision@3 0.2133
dot_precision@5 0.148
dot_precision@10 0.082
dot_recall@1 0.42
dot_recall@3 0.64
dot_recall@5 0.74
dot_recall@10 0.82
dot_ndcg@10 0.6247
dot_mrr@10 0.5612
dot_map@100 0.5701
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_256
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 256
    }
    
Metric Value
dot_accuracy@1 0.42
dot_accuracy@3 0.64
dot_accuracy@5 0.74
dot_accuracy@10 0.82
dot_precision@1 0.42
dot_precision@3 0.2133
dot_precision@5 0.148
dot_precision@10 0.082
dot_recall@1 0.42
dot_recall@3 0.64
dot_recall@5 0.74
dot_recall@10 0.82
dot_ndcg@10 0.6247
dot_mrr@10 0.5612
dot_map@100 0.5701
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Sparse Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.36 0.8 0.9 0.56 0.76 0.42 0.44 0.5 0.92 0.56 0.36 0.7 0.5306
dot_accuracy@3 0.52 0.88 0.92 0.7 0.9 0.64 0.56 0.72 0.96 0.76 0.78 0.8 0.8367
dot_accuracy@5 0.66 0.92 0.96 0.72 0.94 0.76 0.6 0.76 1.0 0.78 0.84 0.82 0.898
dot_accuracy@10 0.8 0.94 0.96 0.72 0.94 0.82 0.74 0.84 1.0 0.88 0.94 0.88 0.9796
dot_precision@1 0.36 0.8 0.9 0.56 0.76 0.42 0.44 0.5 0.92 0.56 0.36 0.7 0.5306
dot_precision@3 0.2 0.6 0.3267 0.32 0.5 0.2133 0.3533 0.2467 0.4 0.4 0.26 0.2867 0.5306
dot_precision@5 0.156 0.58 0.204 0.236 0.316 0.152 0.32 0.16 0.268 0.292 0.168 0.184 0.5143
dot_precision@10 0.114 0.484 0.102 0.13 0.172 0.082 0.272 0.088 0.138 0.21 0.094 0.1 0.4347
dot_recall@1 0.1573 0.0936 0.8467 0.2992 0.38 0.42 0.0352 0.48 0.7973 0.1187 0.36 0.665 0.0367
dot_recall@3 0.2473 0.1618 0.8933 0.4673 0.75 0.64 0.0765 0.67 0.922 0.2497 0.78 0.79 0.1112
dot_recall@5 0.313 0.2269 0.9333 0.5337 0.79 0.76 0.116 0.72 0.9893 0.3027 0.84 0.81 0.175
dot_recall@10 0.438 0.3304 0.9333 0.5473 0.86 0.82 0.1593 0.79 0.996 0.4317 0.94 0.88 0.2873
dot_ndcg@10 0.3566 0.6072 0.9081 0.5253 0.7911 0.6248 0.3345 0.648 0.9494 0.4266 0.6675 0.7776 0.478
dot_mrr@10 0.4796 0.852 0.92 0.6317 0.8333 0.5614 0.5148 0.6163 0.9457 0.6682 0.5782 0.7519 0.7052
dot_map@100 0.2782 0.4541 0.8921 0.48 0.7411 0.5703 0.1544 0.6035 0.9286 0.3386 0.5803 0.7421 0.3659
query_active_dims 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0
query_sparsity_ratio 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375
corpus_active_dims 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0
corpus_sparsity_ratio 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.6008
dot_accuracy@3 0.7674
dot_accuracy@5 0.8198
dot_accuracy@10 0.88
dot_precision@1 0.6008
dot_precision@3 0.3567
dot_precision@5 0.2731
dot_precision@10 0.1862
dot_recall@1 0.3608
dot_recall@3 0.5199
dot_recall@5 0.5777
dot_recall@10 0.6472
dot_ndcg@10 0.6227
dot_mrr@10 0.6968
dot_map@100 0.5484
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 3.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 3.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_8_dot_ndcg@10 NanoBEIR_mean_8_dot_ndcg@10 NanoMSMARCO_16_dot_ndcg@10 NanoBEIR_mean_16_dot_ndcg@10 NanoMSMARCO_32_dot_ndcg@10 NanoBEIR_mean_32_dot_ndcg@10 NanoMSMARCO_64_dot_ndcg@10 NanoBEIR_mean_64_dot_ndcg@10 NanoMSMARCO_128_dot_ndcg@10 NanoBEIR_mean_128_dot_ndcg@10 NanoMSMARCO_256_dot_ndcg@10 NanoBEIR_mean_256_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
-1 -1 - - 0.2447 0.2447 0.3677 0.3677 0.5086 0.5086 0.5304 0.5304 0.6134 0.6134 0.5961 0.5961 - - - - - - - - - - - - - -
0.0646 100 0.5048 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1293 200 0.5017 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1939 300 0.531 0.6279 0.2125 0.2125 0.4075 0.4075 0.4686 0.4686 0.5701 0.5701 0.6086 0.6086 0.5877 0.5877 - - - - - - - - - - - - - -
0.2586 400 0.4992 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3232 500 0.5574 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3878 600 0.5821 0.6178 0.2312 0.2312 0.4248 0.4248 0.4239 0.4239 0.5142 0.5142 0.6034 0.6034 0.6177 0.6177 - - - - - - - - - - - - - -
0.4525 700 0.5632 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5171 800 0.5786 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5818 900 0.5329 0.5743 0.2662 0.2662 0.4468 0.4468 0.4976 0.4976 0.5630 0.5630 0.6279 0.6279 0.6240 0.6240 - - - - - - - - - - - - - -
0.6464 1000 0.5409 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7111 1100 0.4995 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7757 1200 0.5269 0.5169 0.2838 0.2838 0.3874 0.3874 0.4738 0.4738 0.5892 0.5892 0.5798 0.5798 0.5962 0.5962 - - - - - - - - - - - - - -
0.8403 1300 0.5553 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9050 1400 0.45 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9696 1500 0.4551 0.5188 0.2553 0.2553 0.3971 0.3971 0.4873 0.4873 0.5911 0.5911 0.5877 0.5877 0.6247 0.6247 - - - - - - - - - - - - - -
-1 -1 - - - - - - - - - - - - - - 0.3566 0.6072 0.9081 0.5253 0.7911 0.6248 0.3345 0.6480 0.9494 0.4266 0.6675 0.7776 0.4780 0.6227
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.122 kWh
  • Carbon Emitted: 0.047 kg of CO2
  • Hours Used: 0.373 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
1
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tomaarsen/csr-mxbai-embed-large-v1-nq-updated-reconstruction-4

Finetuned
(36)
this model

Dataset used to train tomaarsen/csr-mxbai-embed-large-v1-nq-updated-reconstruction-4

Evaluation results