tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
7f028c2 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - csr
  - generated_from_trainer
  - dataset_size:99000
  - loss:CSRLoss
  - loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 47.46504952064221
  energy_consumed: 0.12211166786032028
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.373
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Sparse CSR model trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 8
          type: NanoMSMARCO_8
        metrics:
          - type: dot_accuracy@1
            value: 0.16
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.2
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.28
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.4
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.16
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.06666666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.056000000000000015
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.04
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.16
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.2
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.28
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2553207334684595
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.2125238095238095
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.2276491742120407
            name: Dot Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 8
          type: NanoBEIR_mean_8
        metrics:
          - type: dot_accuracy@1
            value: 0.16
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.2
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.28
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.4
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.16
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.06666666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.056000000000000015
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.04
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.16
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.2
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.28
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2553207334684595
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.2125238095238095
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.2276491742120407
            name: Dot Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 16
          type: NanoMSMARCO_16
        metrics:
          - type: dot_accuracy@1
            value: 0.24
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.38
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.5
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.58
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.24
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.12666666666666665
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.1
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.05800000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.24
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.38
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.58
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3970913773706993
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.34011111111111114
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3530097721306681
            name: Dot Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 16
          type: NanoBEIR_mean_16
        metrics:
          - type: dot_accuracy@1
            value: 0.24
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.38
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.5
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.58
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.24
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.12666666666666665
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.1
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.05800000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.24
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.38
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.58
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3970913773706993
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.34011111111111114
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3530097721306681
            name: Dot Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 32
          type: NanoMSMARCO_32
        metrics:
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.46
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.15333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.12400000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.46
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.62
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.7
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4872873611978302
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4205555555555555
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.43261790702081204
            name: Dot Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 32
          type: NanoBEIR_mean_32
        metrics:
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.46
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.15333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.12400000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.46
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.62
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.7
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4872873611978302
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4205555555555555
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.43261790702081204
            name: Dot Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 64
          type: NanoMSMARCO_64
        metrics:
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.68
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.136
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07800000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.6
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.68
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.78
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.591060924123
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5316666666666666
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5405635822735777
            name: Dot Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 64
          type: NanoBEIR_mean_64
        metrics:
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.68
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.136
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07800000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.6
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.68
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.78
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.591060924123
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5316666666666666
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5405635822735777
            name: Dot Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 128
          type: NanoMSMARCO_128
        metrics:
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.21333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.36
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.64
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5877041624403332
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5139126984126984
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5216553078498245
            name: Dot Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 128
          type: NanoBEIR_mean_128
        metrics:
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.21333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.36
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.64
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5877041624403332
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5139126984126984
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5216553078498245
            name: Dot Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 256
          type: NanoMSMARCO_256
        metrics:
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.74
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.21333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14800000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.64
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.74
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6246741093433497
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5611904761904761
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5700740174857822
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 256
          type: NanoBEIR_mean_256
        metrics:
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.74
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.21333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14800000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.64
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.74
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6246741093433497
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5611904761904761
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5700740174857822
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.52
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.66
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.15600000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.11399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.1573333333333333
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.24733333333333335
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.313
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.43799999999999994
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.35656565827441056
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.479611111111111
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.27824724841197973
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: dot_accuracy@1
            value: 0.8
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.88
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.92
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.94
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.8
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.6
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.5800000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.484
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.09363124545761783
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.1617934849974966
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.2269008951554618
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.33039847394029737
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.607206208169174
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.852
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4541106866963296
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.9
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.92
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.96
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.96
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.9
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.32666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.204
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.102
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.8466666666666667
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.8933333333333333
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.9333333333333332
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9333333333333332
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.9080731736277194
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.92
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.8921016869970377
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: dot_accuracy@1
            value: 0.56
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.72
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.56
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.31999999999999995
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.236
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.29924603174603176
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.46729365079365076
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5337301587301587
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5473412698412699
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5253203704684166
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6316666666666666
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.48003870359394873
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: dot_accuracy@1
            value: 0.76
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.9
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.94
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.94
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.76
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.316
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.17199999999999996
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.38
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.75
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.79
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.86
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7910580229553633
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8333333333333333
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.7410767962182596
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.21333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.15200000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08199999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.64
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.76
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.82
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6248295446703863
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5613809523809523
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5703445525063172
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.44
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.74
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.44
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3533333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.32
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.272
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.03517605061787946
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.07646787868408336
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.11598401724221898
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.15931797747485815
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.33447068554509884
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5147698412698413
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.15438429278142912
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.5
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.72
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.24666666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.16
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.088
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.48
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.67
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.79
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6479593376479322
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6163333333333333
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.6035174820443362
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: dot_accuracy@1
            value: 0.92
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.96
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 1
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 1
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.92
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3999999999999999
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.26799999999999996
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13799999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.7973333333333332
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.922
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.9893333333333334
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.996
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.9493554410777213
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.9456666666666667
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.9286237373737373
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: dot_accuracy@1
            value: 0.56
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.76
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.78
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.88
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.56
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.4
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.29200000000000004
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.20999999999999996
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.11866666666666668
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.24966666666666665
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.30266666666666675
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4316666666666666
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4265505670611979
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6682142857142856
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3385559757581844
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.78
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.84
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.94
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.26
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.16799999999999998
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.36
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.78
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.84
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.94
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6674878961390456
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5782460317460317
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5802628384687207
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: dot_accuracy@1
            value: 0.7
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.8
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.82
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.88
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.7
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2866666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.184
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.1
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.665
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.79
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.81
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.88
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7776207541845983
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7519444444444445
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.742050969601677
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: dot_accuracy@1
            value: 0.5306122448979592
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.8367346938775511
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8979591836734694
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9795918367346939
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5306122448979592
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5306122448979591
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.5142857142857142
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.43469387755102035
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.03672756127909814
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.11122615754561782
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.17495428374251296
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.28731694149491666
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.47801832046439025
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7052073210236476
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3658602219028105
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.6008163265306123
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7674411302982732
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8198430141287284
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8799686028257457
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.6008163265306123
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3567137624280482
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.2730989010989011
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.18620722135007847
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3607523760846636
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.5199318850272447
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5776848221695142
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.6471826663654878
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6226550754065734
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6967979990531011
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5483980917195976
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio

Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-updated-reconstruction-4")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[111.0676,  23.1031,  22.6751]])

Evaluation

Metrics

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.16
dot_accuracy@3 0.2
dot_accuracy@5 0.28
dot_accuracy@10 0.4
dot_precision@1 0.16
dot_precision@3 0.0667
dot_precision@5 0.056
dot_precision@10 0.04
dot_recall@1 0.16
dot_recall@3 0.2
dot_recall@5 0.28
dot_recall@10 0.4
dot_ndcg@10 0.2553
dot_mrr@10 0.2125
dot_map@100 0.2276
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_8
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 8
    }
    
Metric Value
dot_accuracy@1 0.16
dot_accuracy@3 0.2
dot_accuracy@5 0.28
dot_accuracy@10 0.4
dot_precision@1 0.16
dot_precision@3 0.0667
dot_precision@5 0.056
dot_precision@10 0.04
dot_recall@1 0.16
dot_recall@3 0.2
dot_recall@5 0.28
dot_recall@10 0.4
dot_ndcg@10 0.2553
dot_mrr@10 0.2125
dot_map@100 0.2276
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.24
dot_accuracy@3 0.38
dot_accuracy@5 0.5
dot_accuracy@10 0.58
dot_precision@1 0.24
dot_precision@3 0.1267
dot_precision@5 0.1
dot_precision@10 0.058
dot_recall@1 0.24
dot_recall@3 0.38
dot_recall@5 0.5
dot_recall@10 0.58
dot_ndcg@10 0.3971
dot_mrr@10 0.3401
dot_map@100 0.353
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_16
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 16
    }
    
Metric Value
dot_accuracy@1 0.24
dot_accuracy@3 0.38
dot_accuracy@5 0.5
dot_accuracy@10 0.58
dot_precision@1 0.24
dot_precision@3 0.1267
dot_precision@5 0.1
dot_precision@10 0.058
dot_recall@1 0.24
dot_recall@3 0.38
dot_recall@5 0.5
dot_recall@10 0.58
dot_ndcg@10 0.3971
dot_mrr@10 0.3401
dot_map@100 0.353
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.3
dot_accuracy@3 0.46
dot_accuracy@5 0.62
dot_accuracy@10 0.7
dot_precision@1 0.3
dot_precision@3 0.1533
dot_precision@5 0.124
dot_precision@10 0.07
dot_recall@1 0.3
dot_recall@3 0.46
dot_recall@5 0.62
dot_recall@10 0.7
dot_ndcg@10 0.4873
dot_mrr@10 0.4206
dot_map@100 0.4326
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_32
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 32
    }
    
Metric Value
dot_accuracy@1 0.3
dot_accuracy@3 0.46
dot_accuracy@5 0.62
dot_accuracy@10 0.7
dot_precision@1 0.3
dot_precision@3 0.1533
dot_precision@5 0.124
dot_precision@10 0.07
dot_recall@1 0.3
dot_recall@3 0.46
dot_recall@5 0.62
dot_recall@10 0.7
dot_ndcg@10 0.4873
dot_mrr@10 0.4206
dot_map@100 0.4326
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.42
dot_accuracy@3 0.6
dot_accuracy@5 0.68
dot_accuracy@10 0.78
dot_precision@1 0.42
dot_precision@3 0.2
dot_precision@5 0.136
dot_precision@10 0.078
dot_recall@1 0.42
dot_recall@3 0.6
dot_recall@5 0.68
dot_recall@10 0.78
dot_ndcg@10 0.5911
dot_mrr@10 0.5317
dot_map@100 0.5406
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_64
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 64
    }
    
Metric Value
dot_accuracy@1 0.42
dot_accuracy@3 0.6
dot_accuracy@5 0.68
dot_accuracy@10 0.78
dot_precision@1 0.42
dot_precision@3 0.2
dot_precision@5 0.136
dot_precision@10 0.078
dot_recall@1 0.42
dot_recall@3 0.6
dot_recall@5 0.68
dot_recall@10 0.78
dot_ndcg@10 0.5911
dot_mrr@10 0.5317
dot_map@100 0.5406
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.36
dot_accuracy@3 0.64
dot_accuracy@5 0.72
dot_accuracy@10 0.82
dot_precision@1 0.36
dot_precision@3 0.2133
dot_precision@5 0.144
dot_precision@10 0.082
dot_recall@1 0.36
dot_recall@3 0.64
dot_recall@5 0.72
dot_recall@10 0.82
dot_ndcg@10 0.5877
dot_mrr@10 0.5139
dot_map@100 0.5217
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_128
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 128
    }
    
Metric Value
dot_accuracy@1 0.36
dot_accuracy@3 0.64
dot_accuracy@5 0.72
dot_accuracy@10 0.82
dot_precision@1 0.36
dot_precision@3 0.2133
dot_precision@5 0.144
dot_precision@10 0.082
dot_recall@1 0.36
dot_recall@3 0.64
dot_recall@5 0.72
dot_recall@10 0.82
dot_ndcg@10 0.5877
dot_mrr@10 0.5139
dot_map@100 0.5217
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.42
dot_accuracy@3 0.64
dot_accuracy@5 0.74
dot_accuracy@10 0.82
dot_precision@1 0.42
dot_precision@3 0.2133
dot_precision@5 0.148
dot_precision@10 0.082
dot_recall@1 0.42
dot_recall@3 0.64
dot_recall@5 0.74
dot_recall@10 0.82
dot_ndcg@10 0.6247
dot_mrr@10 0.5612
dot_map@100 0.5701
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_256
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 256
    }
    
Metric Value
dot_accuracy@1 0.42
dot_accuracy@3 0.64
dot_accuracy@5 0.74
dot_accuracy@10 0.82
dot_precision@1 0.42
dot_precision@3 0.2133
dot_precision@5 0.148
dot_precision@10 0.082
dot_recall@1 0.42
dot_recall@3 0.64
dot_recall@5 0.74
dot_recall@10 0.82
dot_ndcg@10 0.6247
dot_mrr@10 0.5612
dot_map@100 0.5701
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Sparse Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.36 0.8 0.9 0.56 0.76 0.42 0.44 0.5 0.92 0.56 0.36 0.7 0.5306
dot_accuracy@3 0.52 0.88 0.92 0.7 0.9 0.64 0.56 0.72 0.96 0.76 0.78 0.8 0.8367
dot_accuracy@5 0.66 0.92 0.96 0.72 0.94 0.76 0.6 0.76 1.0 0.78 0.84 0.82 0.898
dot_accuracy@10 0.8 0.94 0.96 0.72 0.94 0.82 0.74 0.84 1.0 0.88 0.94 0.88 0.9796
dot_precision@1 0.36 0.8 0.9 0.56 0.76 0.42 0.44 0.5 0.92 0.56 0.36 0.7 0.5306
dot_precision@3 0.2 0.6 0.3267 0.32 0.5 0.2133 0.3533 0.2467 0.4 0.4 0.26 0.2867 0.5306
dot_precision@5 0.156 0.58 0.204 0.236 0.316 0.152 0.32 0.16 0.268 0.292 0.168 0.184 0.5143
dot_precision@10 0.114 0.484 0.102 0.13 0.172 0.082 0.272 0.088 0.138 0.21 0.094 0.1 0.4347
dot_recall@1 0.1573 0.0936 0.8467 0.2992 0.38 0.42 0.0352 0.48 0.7973 0.1187 0.36 0.665 0.0367
dot_recall@3 0.2473 0.1618 0.8933 0.4673 0.75 0.64 0.0765 0.67 0.922 0.2497 0.78 0.79 0.1112
dot_recall@5 0.313 0.2269 0.9333 0.5337 0.79 0.76 0.116 0.72 0.9893 0.3027 0.84 0.81 0.175
dot_recall@10 0.438 0.3304 0.9333 0.5473 0.86 0.82 0.1593 0.79 0.996 0.4317 0.94 0.88 0.2873
dot_ndcg@10 0.3566 0.6072 0.9081 0.5253 0.7911 0.6248 0.3345 0.648 0.9494 0.4266 0.6675 0.7776 0.478
dot_mrr@10 0.4796 0.852 0.92 0.6317 0.8333 0.5614 0.5148 0.6163 0.9457 0.6682 0.5782 0.7519 0.7052
dot_map@100 0.2782 0.4541 0.8921 0.48 0.7411 0.5703 0.1544 0.6035 0.9286 0.3386 0.5803 0.7421 0.3659
query_active_dims 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0
query_sparsity_ratio 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375
corpus_active_dims 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0
corpus_sparsity_ratio 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.6008
dot_accuracy@3 0.7674
dot_accuracy@5 0.8198
dot_accuracy@10 0.88
dot_precision@1 0.6008
dot_precision@3 0.3567
dot_precision@5 0.2731
dot_precision@10 0.1862
dot_recall@1 0.3608
dot_recall@3 0.5199
dot_recall@5 0.5777
dot_recall@10 0.6472
dot_ndcg@10 0.6227
dot_mrr@10 0.6968
dot_map@100 0.5484
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 3.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 3.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_8_dot_ndcg@10 NanoBEIR_mean_8_dot_ndcg@10 NanoMSMARCO_16_dot_ndcg@10 NanoBEIR_mean_16_dot_ndcg@10 NanoMSMARCO_32_dot_ndcg@10 NanoBEIR_mean_32_dot_ndcg@10 NanoMSMARCO_64_dot_ndcg@10 NanoBEIR_mean_64_dot_ndcg@10 NanoMSMARCO_128_dot_ndcg@10 NanoBEIR_mean_128_dot_ndcg@10 NanoMSMARCO_256_dot_ndcg@10 NanoBEIR_mean_256_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
-1 -1 - - 0.2447 0.2447 0.3677 0.3677 0.5086 0.5086 0.5304 0.5304 0.6134 0.6134 0.5961 0.5961 - - - - - - - - - - - - - -
0.0646 100 0.5048 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1293 200 0.5017 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1939 300 0.531 0.6279 0.2125 0.2125 0.4075 0.4075 0.4686 0.4686 0.5701 0.5701 0.6086 0.6086 0.5877 0.5877 - - - - - - - - - - - - - -
0.2586 400 0.4992 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3232 500 0.5574 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3878 600 0.5821 0.6178 0.2312 0.2312 0.4248 0.4248 0.4239 0.4239 0.5142 0.5142 0.6034 0.6034 0.6177 0.6177 - - - - - - - - - - - - - -
0.4525 700 0.5632 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5171 800 0.5786 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5818 900 0.5329 0.5743 0.2662 0.2662 0.4468 0.4468 0.4976 0.4976 0.5630 0.5630 0.6279 0.6279 0.6240 0.6240 - - - - - - - - - - - - - -
0.6464 1000 0.5409 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7111 1100 0.4995 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7757 1200 0.5269 0.5169 0.2838 0.2838 0.3874 0.3874 0.4738 0.4738 0.5892 0.5892 0.5798 0.5798 0.5962 0.5962 - - - - - - - - - - - - - -
0.8403 1300 0.5553 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9050 1400 0.45 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9696 1500 0.4551 0.5188 0.2553 0.2553 0.3971 0.3971 0.4873 0.4873 0.5911 0.5911 0.5877 0.5877 0.6247 0.6247 - - - - - - - - - - - - - -
-1 -1 - - - - - - - - - - - - - - 0.3566 0.6072 0.9081 0.5253 0.7911 0.6248 0.3345 0.6480 0.9494 0.4266 0.6675 0.7776 0.4780 0.6227
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.122 kWh
  • Carbon Emitted: 0.047 kg of CO2
  • Hours Used: 0.373 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}