SentenceTransformer based on microsoft/mpnet-base

This is a sentence-transformers model finetuned from microsoft/mpnet-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/mpnet-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-nli-matryoshka-reproduced")
# Run inference
sentences = [
    'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
    'A worker is looking out of a manhole.',
    'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric sts-dev-768 sts-test-768
pearson_cosine 0.8428 0.8189
spearman_cosine 0.8509 0.8359

Semantic Similarity

Metric sts-dev-512 sts-test-512
pearson_cosine 0.8403 0.8186
spearman_cosine 0.8493 0.8362

Semantic Similarity

Metric sts-dev-256 sts-test-256
pearson_cosine 0.8347 0.813
spearman_cosine 0.8463 0.8332

Semantic Similarity

Metric sts-dev-128 sts-test-128
pearson_cosine 0.8258 0.803
spearman_cosine 0.8396 0.8262

Semantic Similarity

Metric sts-dev-64 sts-test-64
pearson_cosine 0.8134 0.7904
spearman_cosine 0.8314 0.8194

Training Details

Training Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 557,850 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 10.46 tokens
    • max: 46 tokens
    • min: 6 tokens
    • mean: 12.81 tokens
    • max: 40 tokens
    • min: 5 tokens
    • mean: 13.4 tokens
    • max: 50 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 6,584 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 17.95 tokens
    • max: 63 tokens
    • min: 4 tokens
    • mean: 9.78 tokens
    • max: 29 tokens
    • min: 5 tokens
    • mean: 10.35 tokens
    • max: 29 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts-dev-768_spearman_cosine sts-dev-512_spearman_cosine sts-dev-256_spearman_cosine sts-dev-128_spearman_cosine sts-dev-64_spearman_cosine sts-test-768_spearman_cosine sts-test-512_spearman_cosine sts-test-256_spearman_cosine sts-test-128_spearman_cosine sts-test-64_spearman_cosine
0.0459 1600 4.3243 1.5267 0.8525 0.8475 0.8438 0.8356 0.8155 - - - - -
0.0918 3200 2.4538 1.4448 0.8479 0.8439 0.8403 0.8346 0.8249 - - - - -
0.1377 4800 2.2829 1.5117 0.8507 0.8481 0.8429 0.8348 0.8203 - - - - -
0.1836 6400 2.0446 1.2684 0.8574 0.8541 0.8498 0.8413 0.8302 - - - - -
0.2294 8000 1.8867 1.3107 0.8452 0.8423 0.8400 0.8352 0.8255 - - - - -
0.2753 9600 1.747 1.1663 0.8456 0.8420 0.8384 0.8292 0.8229 - - - - -
0.3212 11200 1.6297 1.0809 0.8420 0.8388 0.8360 0.8294 0.8205 - - - - -
0.3671 12800 1.5974 1.0853 0.8374 0.8352 0.8310 0.8264 0.8184 - - - - -
0.4130 14400 1.5227 1.0440 0.8479 0.8457 0.8434 0.8380 0.8266 - - - - -
0.4589 16000 1.3835 1.0718 0.8365 0.8341 0.8310 0.8258 0.8172 - - - - -
0.5048 17600 1.3893 1.0140 0.8384 0.8363 0.8339 0.8275 0.8178 - - - - -
0.5507 19200 1.3203 1.0048 0.8418 0.8400 0.8364 0.8292 0.8204 - - - - -
0.5966 20800 1.2396 0.9407 0.8458 0.8439 0.8404 0.8353 0.8274 - - - - -
0.6425 22400 1.1842 0.9541 0.8435 0.8404 0.8384 0.8335 0.8257 - - - - -
0.6883 24000 1.1217 0.9000 0.8534 0.8512 0.8478 0.8408 0.8297 - - - - -
0.7342 25600 1.093 0.8731 0.8525 0.8503 0.8467 0.8406 0.8313 - - - - -
0.7801 27200 1.0609 0.8238 0.8528 0.8510 0.8469 0.8399 0.8312 - - - - -
0.8260 28800 0.9807 0.8264 0.8497 0.8478 0.8448 0.8384 0.8295 - - - - -
0.8719 30400 1.0061 0.8135 0.8455 0.8439 0.8405 0.8338 0.8256 - - - - -
0.9178 32000 0.9724 0.7965 0.8517 0.8499 0.8465 0.8401 0.8319 - - - - -
0.9637 33600 0.9057 0.7841 0.8509 0.8493 0.8463 0.8396 0.8314 - - - - -
-1 -1 - - - - - - - 0.8359 0.8362 0.8332 0.8262 0.8194

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.529 kWh
  • Carbon Emitted: 0.206 kg of CO2
  • Hours Used: 2.452 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.1.0.dev0
  • Transformers: 4.51.1
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 3.3.2
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tomaarsen/mpnet-base-nli-matryoshka-reproduced

Finetuned
(68)
this model

Dataset used to train tomaarsen/mpnet-base-nli-matryoshka-reproduced

Evaluation results