SentenceTransformer based on microsoft/mpnet-base
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-nli-matryoshka-reproduced")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev-768
andsts-test-768
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | sts-dev-768 | sts-test-768 |
---|---|---|
pearson_cosine | 0.8428 | 0.8189 |
spearman_cosine | 0.8509 | 0.8359 |
Semantic Similarity
- Datasets:
sts-dev-512
andsts-test-512
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | sts-dev-512 | sts-test-512 |
---|---|---|
pearson_cosine | 0.8403 | 0.8186 |
spearman_cosine | 0.8493 | 0.8362 |
Semantic Similarity
- Datasets:
sts-dev-256
andsts-test-256
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | sts-dev-256 | sts-test-256 |
---|---|---|
pearson_cosine | 0.8347 | 0.813 |
spearman_cosine | 0.8463 | 0.8332 |
Semantic Similarity
- Datasets:
sts-dev-128
andsts-test-128
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | sts-dev-128 | sts-test-128 |
---|---|---|
pearson_cosine | 0.8258 | 0.803 |
spearman_cosine | 0.8396 | 0.8262 |
Semantic Similarity
- Datasets:
sts-dev-64
andsts-test-64
- Evaluated with
EmbeddingSimilarityEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | sts-dev-64 | sts-test-64 |
---|---|---|
pearson_cosine | 0.8134 | 0.7904 |
spearman_cosine | 0.8314 | 0.8194 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 17.95 tokens
- max: 63 tokens
- min: 4 tokens
- mean: 9.78 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.35 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev-768_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-128_spearman_cosine | sts-dev-64_spearman_cosine | sts-test-768_spearman_cosine | sts-test-512_spearman_cosine | sts-test-256_spearman_cosine | sts-test-128_spearman_cosine | sts-test-64_spearman_cosine |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0459 | 1600 | 4.3243 | 1.5267 | 0.8525 | 0.8475 | 0.8438 | 0.8356 | 0.8155 | - | - | - | - | - |
0.0918 | 3200 | 2.4538 | 1.4448 | 0.8479 | 0.8439 | 0.8403 | 0.8346 | 0.8249 | - | - | - | - | - |
0.1377 | 4800 | 2.2829 | 1.5117 | 0.8507 | 0.8481 | 0.8429 | 0.8348 | 0.8203 | - | - | - | - | - |
0.1836 | 6400 | 2.0446 | 1.2684 | 0.8574 | 0.8541 | 0.8498 | 0.8413 | 0.8302 | - | - | - | - | - |
0.2294 | 8000 | 1.8867 | 1.3107 | 0.8452 | 0.8423 | 0.8400 | 0.8352 | 0.8255 | - | - | - | - | - |
0.2753 | 9600 | 1.747 | 1.1663 | 0.8456 | 0.8420 | 0.8384 | 0.8292 | 0.8229 | - | - | - | - | - |
0.3212 | 11200 | 1.6297 | 1.0809 | 0.8420 | 0.8388 | 0.8360 | 0.8294 | 0.8205 | - | - | - | - | - |
0.3671 | 12800 | 1.5974 | 1.0853 | 0.8374 | 0.8352 | 0.8310 | 0.8264 | 0.8184 | - | - | - | - | - |
0.4130 | 14400 | 1.5227 | 1.0440 | 0.8479 | 0.8457 | 0.8434 | 0.8380 | 0.8266 | - | - | - | - | - |
0.4589 | 16000 | 1.3835 | 1.0718 | 0.8365 | 0.8341 | 0.8310 | 0.8258 | 0.8172 | - | - | - | - | - |
0.5048 | 17600 | 1.3893 | 1.0140 | 0.8384 | 0.8363 | 0.8339 | 0.8275 | 0.8178 | - | - | - | - | - |
0.5507 | 19200 | 1.3203 | 1.0048 | 0.8418 | 0.8400 | 0.8364 | 0.8292 | 0.8204 | - | - | - | - | - |
0.5966 | 20800 | 1.2396 | 0.9407 | 0.8458 | 0.8439 | 0.8404 | 0.8353 | 0.8274 | - | - | - | - | - |
0.6425 | 22400 | 1.1842 | 0.9541 | 0.8435 | 0.8404 | 0.8384 | 0.8335 | 0.8257 | - | - | - | - | - |
0.6883 | 24000 | 1.1217 | 0.9000 | 0.8534 | 0.8512 | 0.8478 | 0.8408 | 0.8297 | - | - | - | - | - |
0.7342 | 25600 | 1.093 | 0.8731 | 0.8525 | 0.8503 | 0.8467 | 0.8406 | 0.8313 | - | - | - | - | - |
0.7801 | 27200 | 1.0609 | 0.8238 | 0.8528 | 0.8510 | 0.8469 | 0.8399 | 0.8312 | - | - | - | - | - |
0.8260 | 28800 | 0.9807 | 0.8264 | 0.8497 | 0.8478 | 0.8448 | 0.8384 | 0.8295 | - | - | - | - | - |
0.8719 | 30400 | 1.0061 | 0.8135 | 0.8455 | 0.8439 | 0.8405 | 0.8338 | 0.8256 | - | - | - | - | - |
0.9178 | 32000 | 0.9724 | 0.7965 | 0.8517 | 0.8499 | 0.8465 | 0.8401 | 0.8319 | - | - | - | - | - |
0.9637 | 33600 | 0.9057 | 0.7841 | 0.8509 | 0.8493 | 0.8463 | 0.8396 | 0.8314 | - | - | - | - | - |
-1 | -1 | - | - | - | - | - | - | - | 0.8359 | 0.8362 | 0.8332 | 0.8262 | 0.8194 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.529 kWh
- Carbon Emitted: 0.206 kg of CO2
- Hours Used: 2.452 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.1.0.dev0
- Transformers: 4.51.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for tomaarsen/mpnet-base-nli-matryoshka-reproduced
Base model
microsoft/mpnet-baseDataset used to train tomaarsen/mpnet-base-nli-matryoshka-reproduced
Evaluation results
- Pearson Cosine on sts dev 768self-reported0.843
- Spearman Cosine on sts dev 768self-reported0.851
- Pearson Cosine on sts dev 512self-reported0.840
- Spearman Cosine on sts dev 512self-reported0.849
- Pearson Cosine on sts dev 256self-reported0.835
- Spearman Cosine on sts dev 256self-reported0.846
- Pearson Cosine on sts dev 128self-reported0.826
- Spearman Cosine on sts dev 128self-reported0.840
- Pearson Cosine on sts dev 64self-reported0.813
- Spearman Cosine on sts dev 64self-reported0.831