metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: A man is jumping unto his filthy bed.
sentences:
- A young male is looking at a newspaper while 2 females walks past him.
- The bed is dirty.
- The man is on the moon.
- source_sentence: >-
A carefully balanced male stands on one foot near a clean ocean beach
area.
sentences:
- A man is ouside near the beach.
- Three policemen patrol the streets on bikes
- A man is sitting on his couch.
- source_sentence: The man is wearing a blue shirt.
sentences:
- Near the trashcan the man stood and smoked
- >-
A man in a blue shirt leans on a wall beside a road with a blue van and
red car with water in the background.
- A man in a black shirt is playing a guitar.
- source_sentence: The girls are outdoors.
sentences:
- Two girls riding on an amusement part ride.
- a guy laughs while doing laundry
- >-
Three girls are standing together in a room, one is listening, one is
writing on a wall and the third is talking to them.
- source_sentence: >-
A construction worker peeking out of a manhole while his coworker sits on
the sidewalk smiling.
sentences:
- A worker is looking out of a manhole.
- A man is giving a presentation.
- The workers are both inside the manhole.
datasets:
- sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
co2_eq_emissions:
emissions: 205.739032893975
energy_consumed: 0.5292975927419334
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 2.452
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on microsoft/mpnet-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 768
type: sts-dev-768
metrics:
- type: pearson_cosine
value: 0.8427806843466507
name: Pearson Cosine
- type: spearman_cosine
value: 0.8508672705970183
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8402650019702758
name: Pearson Cosine
- type: spearman_cosine
value: 0.8492501196021981
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.8346871892249894
name: Pearson Cosine
- type: spearman_cosine
value: 0.8462852114011874
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 128
type: sts-dev-128
metrics:
- type: pearson_cosine
value: 0.8258126981506843
name: Pearson Cosine
- type: spearman_cosine
value: 0.8396442287070809
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 64
type: sts-dev-64
metrics:
- type: pearson_cosine
value: 0.8133510090549183
name: Pearson Cosine
- type: spearman_cosine
value: 0.8314093123007742
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.8189065344720828
name: Pearson Cosine
- type: spearman_cosine
value: 0.8358553875433253
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.8185683063331012
name: Pearson Cosine
- type: spearman_cosine
value: 0.8361687236813662
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.8129602938883278
name: Pearson Cosine
- type: spearman_cosine
value: 0.8332021961323041
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.8030325360463209
name: Pearson Cosine
- type: spearman_cosine
value: 0.826154869627039
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.7903762214352186
name: Pearson Cosine
- type: spearman_cosine
value: 0.8193971659006509
name: Spearman Cosine
SentenceTransformer based on microsoft/mpnet-base
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/mpnet-base-nli-matryoshka-reproduced")
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
sts-dev-768 |
sts-test-768 |
pearson_cosine |
0.8428 |
0.8189 |
spearman_cosine |
0.8509 |
0.8359 |
Semantic Similarity
Metric |
sts-dev-512 |
sts-test-512 |
pearson_cosine |
0.8403 |
0.8186 |
spearman_cosine |
0.8493 |
0.8362 |
Semantic Similarity
Metric |
sts-dev-256 |
sts-test-256 |
pearson_cosine |
0.8347 |
0.813 |
spearman_cosine |
0.8463 |
0.8332 |
Semantic Similarity
Metric |
sts-dev-128 |
sts-test-128 |
pearson_cosine |
0.8258 |
0.803 |
spearman_cosine |
0.8396 |
0.8262 |
Semantic Similarity
Metric |
sts-dev-64 |
sts-test-64 |
pearson_cosine |
0.8134 |
0.7904 |
spearman_cosine |
0.8314 |
0.8194 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
|
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
|
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
|
- Samples:
anchor |
positive |
negative |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
The boy skates down the sidewalk. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 6 tokens
- mean: 17.95 tokens
- max: 63 tokens
|
- min: 4 tokens
- mean: 9.78 tokens
- max: 29 tokens
|
- min: 5 tokens
- mean: 10.35 tokens
- max: 29 tokens
|
- Samples:
anchor |
positive |
negative |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
The men are fighting outside a deli. |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
Two kids in numbered jerseys wash their hands. |
Two kids in jackets walk to school. |
A man selling donuts to a customer during a world exhibition event held in the city of Angeles |
A man selling donuts to a customer. |
A woman drinks her coffee in a small cafe. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
num_train_epochs
: 1
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
Validation Loss |
sts-dev-768_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-128_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-test-768_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-128_spearman_cosine |
sts-test-64_spearman_cosine |
0.0459 |
1600 |
4.3243 |
1.5267 |
0.8525 |
0.8475 |
0.8438 |
0.8356 |
0.8155 |
- |
- |
- |
- |
- |
0.0918 |
3200 |
2.4538 |
1.4448 |
0.8479 |
0.8439 |
0.8403 |
0.8346 |
0.8249 |
- |
- |
- |
- |
- |
0.1377 |
4800 |
2.2829 |
1.5117 |
0.8507 |
0.8481 |
0.8429 |
0.8348 |
0.8203 |
- |
- |
- |
- |
- |
0.1836 |
6400 |
2.0446 |
1.2684 |
0.8574 |
0.8541 |
0.8498 |
0.8413 |
0.8302 |
- |
- |
- |
- |
- |
0.2294 |
8000 |
1.8867 |
1.3107 |
0.8452 |
0.8423 |
0.8400 |
0.8352 |
0.8255 |
- |
- |
- |
- |
- |
0.2753 |
9600 |
1.747 |
1.1663 |
0.8456 |
0.8420 |
0.8384 |
0.8292 |
0.8229 |
- |
- |
- |
- |
- |
0.3212 |
11200 |
1.6297 |
1.0809 |
0.8420 |
0.8388 |
0.8360 |
0.8294 |
0.8205 |
- |
- |
- |
- |
- |
0.3671 |
12800 |
1.5974 |
1.0853 |
0.8374 |
0.8352 |
0.8310 |
0.8264 |
0.8184 |
- |
- |
- |
- |
- |
0.4130 |
14400 |
1.5227 |
1.0440 |
0.8479 |
0.8457 |
0.8434 |
0.8380 |
0.8266 |
- |
- |
- |
- |
- |
0.4589 |
16000 |
1.3835 |
1.0718 |
0.8365 |
0.8341 |
0.8310 |
0.8258 |
0.8172 |
- |
- |
- |
- |
- |
0.5048 |
17600 |
1.3893 |
1.0140 |
0.8384 |
0.8363 |
0.8339 |
0.8275 |
0.8178 |
- |
- |
- |
- |
- |
0.5507 |
19200 |
1.3203 |
1.0048 |
0.8418 |
0.8400 |
0.8364 |
0.8292 |
0.8204 |
- |
- |
- |
- |
- |
0.5966 |
20800 |
1.2396 |
0.9407 |
0.8458 |
0.8439 |
0.8404 |
0.8353 |
0.8274 |
- |
- |
- |
- |
- |
0.6425 |
22400 |
1.1842 |
0.9541 |
0.8435 |
0.8404 |
0.8384 |
0.8335 |
0.8257 |
- |
- |
- |
- |
- |
0.6883 |
24000 |
1.1217 |
0.9000 |
0.8534 |
0.8512 |
0.8478 |
0.8408 |
0.8297 |
- |
- |
- |
- |
- |
0.7342 |
25600 |
1.093 |
0.8731 |
0.8525 |
0.8503 |
0.8467 |
0.8406 |
0.8313 |
- |
- |
- |
- |
- |
0.7801 |
27200 |
1.0609 |
0.8238 |
0.8528 |
0.8510 |
0.8469 |
0.8399 |
0.8312 |
- |
- |
- |
- |
- |
0.8260 |
28800 |
0.9807 |
0.8264 |
0.8497 |
0.8478 |
0.8448 |
0.8384 |
0.8295 |
- |
- |
- |
- |
- |
0.8719 |
30400 |
1.0061 |
0.8135 |
0.8455 |
0.8439 |
0.8405 |
0.8338 |
0.8256 |
- |
- |
- |
- |
- |
0.9178 |
32000 |
0.9724 |
0.7965 |
0.8517 |
0.8499 |
0.8465 |
0.8401 |
0.8319 |
- |
- |
- |
- |
- |
0.9637 |
33600 |
0.9057 |
0.7841 |
0.8509 |
0.8493 |
0.8463 |
0.8396 |
0.8314 |
- |
- |
- |
- |
- |
-1 |
-1 |
- |
- |
- |
- |
- |
- |
- |
0.8359 |
0.8362 |
0.8332 |
0.8262 |
0.8194 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.529 kWh
- Carbon Emitted: 0.206 kg of CO2
- Hours Used: 2.452 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.1.0.dev0
- Transformers: 4.51.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}