tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
45edbe8 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - splade
  - generated_from_trainer
  - dataset_size:90000
  - loss:SpladeLoss
  - loss:SparseMarginMSELoss
  - loss:FlopsLoss
base_model: Luyu/co-condenser-marco
widget:
  - text: weather in ljubljana, slovenia fahrenheit
  - text: which type of shark is the largest?
  - text: "Plan to have the farrier reset your horseâ\x80\x99s shoes approximately every six weeks. The shoes should be shaped to the horseâ\x80\x99s feet for a custom fit."
  - text: what oscars was kudo nominated for
  - text: "Answers from Ronald Petersen, M.D. Yes, Alzheimer's disease usually worsens slowly. But its speed of progression varies, depending on a person's genetic makeup, environmental factors, age at diagnosis and other medical conditions. Still, anyone diagnosed with Alzheimer's whose symptoms seem to be progressing quickly â\x80\x94 or who experiences a sudden decline â\x80\x94 should see his or her doctor."
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 87.59304620021443
  energy_consumed: 0.2253475572552095
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.653
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: CoCondenser trained on MS MARCO
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.66
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.22
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.15200000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.66
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.76
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.84
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6312406680654746
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5636904761904762
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5721212783331427
            name: Dot Map@100
          - type: query_active_dims
            value: 21.100000381469727
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9993086953547778
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 157.69065856933594
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9948335410992288
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.44
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.64
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.68
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.44
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3933333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.336
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.27
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04389819910134535
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.0987021139802183
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.11414854445866388
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.14007230906638554
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.34454508141466533
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5322222222222223
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.1566157643935124
            name: Dot Map@100
          - type: query_active_dims
            value: 17.920000076293945
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.999412882508476
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 311.4259948730469
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9897966714214976
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.48
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.74
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.88
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.48
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2533333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.16799999999999998
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.46
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.7
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.76
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.84
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6640066557351431
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6205238095238095
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.604249902859187
            name: Dot Map@100
          - type: query_active_dims
            value: 25.100000381469727
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.999177642343835
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 194.18609619140625
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9936378318527159
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.4466666666666666
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.68
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7333333333333334
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7999999999999999
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4466666666666666
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.28888888888888886
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.21866666666666668
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.14933333333333332
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3079660663671151
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.4862340379934061
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5447161814862213
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.6066907696887952
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5465974684050944
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5721455026455027
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.44432898186194736
            name: Dot Map@100
          - type: query_active_dims
            value: 21.3733336130778
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9992997400690297
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 206.63049254462427
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9932301129498518
            name: Corpus Sparsity Ratio

CoCondenser trained on MS MARCO

This is a SPLADE Sparse Encoder model finetuned from Luyu/co-condenser-marco using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: Luyu/co-condenser-marco
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-cocondenser-msmarco-margin-mse-minilm")
# Run inference
queries = [
    "what causes aging fast",
]
documents = [
    'UV-A light, specifically, is what mainly causes tanning, skin aging, and cataracts, UV-B causes sunburn, skin aging and skin cancer, and UV-C is the strongest, and therefore most effective at killing microorganisms. Again â\x80\x93 single words and multiple bullets.',
    "Answers from Ronald Petersen, M.D. Yes, Alzheimer's disease usually worsens slowly. But its speed of progression varies, depending on a person's genetic makeup, environmental factors, age at diagnosis and other medical conditions. Still, anyone diagnosed with Alzheimer's whose symptoms seem to be progressing quickly â\x80\x94 or who experiences a sudden decline â\x80\x94 should see his or her doctor.",
    "Bell's palsy and Extreme tiredness and Extreme fatigue (2 causes) Bell's palsy and Extreme tiredness and Hepatitis (2 causes) Bell's palsy and Extreme tiredness and Liver pain (2 causes) Bell's palsy and Extreme tiredness and Lymph node swelling in children (2 causes)",
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[11.2444, 10.6804,  4.3465]])

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO NanoNFCorpus NanoNQ
dot_accuracy@1 0.42 0.44 0.48
dot_accuracy@3 0.66 0.64 0.74
dot_accuracy@5 0.76 0.64 0.8
dot_accuracy@10 0.84 0.68 0.88
dot_precision@1 0.42 0.44 0.48
dot_precision@3 0.22 0.3933 0.2533
dot_precision@5 0.152 0.336 0.168
dot_precision@10 0.084 0.27 0.094
dot_recall@1 0.42 0.0439 0.46
dot_recall@3 0.66 0.0987 0.7
dot_recall@5 0.76 0.1141 0.76
dot_recall@10 0.84 0.1401 0.84
dot_ndcg@10 0.6312 0.3445 0.664
dot_mrr@10 0.5637 0.5322 0.6205
dot_map@100 0.5721 0.1566 0.6042
query_active_dims 21.1 17.92 25.1
query_sparsity_ratio 0.9993 0.9994 0.9992
corpus_active_dims 157.6907 311.426 194.1861
corpus_sparsity_ratio 0.9948 0.9898 0.9936

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4467
dot_accuracy@3 0.68
dot_accuracy@5 0.7333
dot_accuracy@10 0.8
dot_precision@1 0.4467
dot_precision@3 0.2889
dot_precision@5 0.2187
dot_precision@10 0.1493
dot_recall@1 0.308
dot_recall@3 0.4862
dot_recall@5 0.5447
dot_recall@10 0.6067
dot_ndcg@10 0.5466
dot_mrr@10 0.5721
dot_map@100 0.4443
query_active_dims 21.3733
query_sparsity_ratio 0.9993
corpus_active_dims 206.6305
corpus_sparsity_ratio 0.9932

Training Details

Training Dataset

Unnamed Dataset

  • Size: 90,000 training samples
  • Columns: query, positive, negative, and score
  • Approximate statistics based on the first 1000 samples:
    query positive negative score
    type string string string float
    details
    • min: 4 tokens
    • mean: 9.22 tokens
    • max: 36 tokens
    • min: 15 tokens
    • mean: 79.27 tokens
    • max: 247 tokens
    • min: 16 tokens
    • mean: 81.15 tokens
    • max: 201 tokens
    • min: -14.32
    • mean: 4.62
    • max: 21.72
  • Samples:
    query positive negative score
    most powerful army in the world U.S. Army Reserve Command You may be asking yourself, “What is the Army Reserve?” The Army is the most powerful and sophisticated military force in the world. The British Royal Navy was the most powerful sea-going force by the time of World War 1 (1914-1918) and this was well-underst... 2.919867515563965
    define vasomotor Define peripheral neuropathy: a disease or degenerative state of the peripheral nerves in which motor, sensory, or vasomotor nerve fibers may be… a disease or degenerative state of the peripheral nerves in which motor, sensory, or vasomotor nerve fibers may be affected and which is marked… Vairāgya (Devanagari: वैराग्य, also spelt Vairagya) is a Sanskrit term used in Hindu philosophy that roughly translates as dispassion, detachment, or renunciation, in particular renunciation from the pains and pleasures in the material world (Maya). 3.0037026405334473
    nitrates definition biology In Botany or Plant Biology. By Photosynthesis, the palisade cells make glucose which has many uses including: storage as starch, to make fat, to make cellulose and to make protein. Glucose is converted w…ith mineral slat nitrates to make the protein. Nitrates provide the essential nitrogen to make protein. The Ribosome, an organelle of the plant cell, manufactures most of the cell's protein. Almost all inorganic nitrate salts are soluble in water at standard temperature and pressure. A common example of an inorganic nitrate salt is potassium nitrate (saltpeter). A rich source of inorganic nitrate in the human body comes from diets rich in leafy green foods, such as spinach and arugula.It is now believed that dietary nitrate in the form of plant-based foods is converted in the body to nitrite.itrate is a polyatomic ion with the molecular formula NO 3 − and a molecular mass of 62.0049 g/mol. -1.6804794073104858
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMarginMSELoss",
        "lambda_corpus": 0.08,
        "lambda_query": 0.1
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 10,000 evaluation samples
  • Columns: query, positive, negative, and score
  • Approximate statistics based on the first 1000 samples:
    query positive negative score
    type string string string float
    details
    • min: 4 tokens
    • mean: 9.01 tokens
    • max: 35 tokens
    • min: 17 tokens
    • mean: 79.8 tokens
    • max: 336 tokens
    • min: 18 tokens
    • mean: 81.3 tokens
    • max: 273 tokens
    • min: -15.9
    • mean: 4.91
    • max: 21.67
  • Samples:
    query positive negative score
    femoral artery definition medical Definition of circumflex artery : any of several paired curving arteries: as a: either of two arteries that branch from the deep femoral artery or from the femoral artery itself: Femoral vein. The femoral vein is located in the upper thigh and pelvic region of the human body. It travels in close proximity to the femoral artery. This vein is one of the larger vessels in the venous system. Instead of draining deoxygenated blood from specific parts of the body, it receives blood from several significant branches. These include popliteal, the profunda femoris, and the great sapheneous veins. -0.1968388557434082
    what causes mastitis and how do you treat it Mastitis is an infection of the tissue of the breast that occurs most frequently during the time of breastfeeding. This infection causes pain, swelling, redness, and increased temperature of the breast. It can occur when bacteria, often from the infant's mouth, enter a milk duct through a crack in the nipple. This causes an infection and painful inflammation of the breast. Common causes of mastitis include bacteria from the baby’s mouth, bacteria entering via breast injuries (bruising, fissures, cracks in the nipple), milk stasis (milk pooling in the breast), and bacteria from the hands of the mother or health care provider. -0.8143405914306641
    what is a buck moth Buck moth caterpillars that have a light background color can be confused with both the Nevada buck moth, Hemileuca nevadensis Stretch, and the New England buck moth, Hemileuca lucina Henry Edwards. The larvae of these three species can best be distinguished based on the preferred host plants (Wagner 2005).hey rely on resources that are acquired by the caterpillars (larvae). The caterpillars are robust and can exceed four inches (10 cm) in North America. Figure 4. Adult cecropia moth, Hyalophora cecropia (Linnaeus). Photograph by Pennsylvania Department of Conservation and Natural Resources-Forestry Archive, Bugwood.org. bucktail that gets talked about quietly in the . privacy of remote cabins. The “Musky-Teer” is a big fish bait that anglers treasure in their collection. You won’t find these at your local bait shop but we’ve been stocking these highly prized baits in all colors for years. 11.004357814788818
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMarginMSELoss",
        "lambda_corpus": 0.08,
        "lambda_query": 0.1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.0178 100 501776.8 - - - - -
0.0356 200 9740.8356 - - - - -
0.0533 300 61.9771 - - - - -
0.0711 400 37.6145 - - - - -
0.0889 500 28.8887 24.4953 0.4878 0.3047 0.5425 0.4450
0.1067 600 24.7991 - - - - -
0.1244 700 22.1517 - - - - -
0.1422 800 22.0889 - - - - -
0.16 900 20.7825 - - - - -
0.1778 1000 20.0856 18.6383 0.5751 0.3303 0.6100 0.5051
0.1956 1100 18.6968 - - - - -
0.2133 1200 20.5069 - - - - -
0.2311 1300 19.8162 - - - - -
0.2489 1400 19.1892 - - - - -
0.2667 1500 17.5024 18.0698 0.5750 0.3281 0.6222 0.5084
0.2844 1600 17.7801 - - - - -
0.3022 1700 17.9045 - - - - -
0.32 1800 16.3731 - - - - -
0.3378 1900 16.293 - - - - -
0.3556 2000 16.1167 14.5428 0.5696 0.3422 0.6232 0.5116
0.3733 2100 16.561 - - - - -
0.3911 2200 16.5533 - - - - -
0.4089 2300 14.9371 - - - - -
0.4267 2400 15.565 - - - - -
0.4444 2500 14.2143 15.2027 0.6071 0.3376 0.6600 0.5349
0.4622 2600 13.7188 - - - - -
0.48 2700 14.8554 - - - - -
0.4978 2800 15.1021 - - - - -
0.5156 2900 13.3032 - - - - -
0.5333 3000 13.8999 12.9609 0.5874 0.3423 0.6562 0.5286
0.5511 3100 12.7418 - - - - -
0.5689 3200 12.9422 - - - - -
0.5867 3300 13.6937 - - - - -
0.6044 3400 13.1183 - - - - -
0.6222 3500 12.7998 12.2024 0.6262 0.3424 0.6771 0.5486
0.64 3600 12.7799 - - - - -
0.6578 3700 12.2294 - - - - -
0.6756 3800 13.6836 - - - - -
0.6933 3900 13.579 - - - - -
0.7111 4000 12.6337 13.9878 0.6156 0.3435 0.6526 0.5372
0.7289 4100 12.682 - - - - -
0.7467 4200 12.2157 - - - - -
0.7644 4300 12.3127 - - - - -
0.7822 4400 11.7435 - - - - -
0.8 4500 12.086 12.3685 0.6262 0.3386 0.6782 0.5477
0.8178 4600 12.5455 - - - - -
0.8356 4700 11.7477 - - - - -
0.8533 4800 11.9948 - - - - -
0.8711 4900 11.8997 - - - - -
0.8889 5000 12.1624 12.8277 0.6241 0.3515 0.6740 0.5499
0.9067 5100 11.4352 - - - - -
0.9244 5200 10.9171 - - - - -
0.9422 5300 11.3242 - - - - -
0.96 5400 11.437 - - - - -
0.9778 5500 11.3141 11.6410 0.6366 0.3441 0.6605 0.5471
0.9956 5600 11.8683 - - - - -
-1 -1 - - 0.6312 0.3445 0.6640 0.5466

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.225 kWh
  • Carbon Emitted: 0.088 kg of CO2
  • Hours Used: 0.653 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMarginMSELoss

@misc{hofstätter2021improving,
    title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
    author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
    year={2021},
    eprint={2010.02666},
    archivePrefix={arXiv},
    primaryClass={cs.IR}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }