|
---
|
|
language:
|
|
- en
|
|
license: apache-2.0
|
|
tags:
|
|
- sentence-transformers
|
|
- sparse-encoder
|
|
- sparse
|
|
- splade
|
|
- generated_from_trainer
|
|
- dataset_size:90000
|
|
- loss:SpladeLoss
|
|
- loss:SparseMarginMSELoss
|
|
- loss:FlopsLoss
|
|
base_model: Luyu/co-condenser-marco
|
|
widget:
|
|
- text: up to what age can a child get autism
|
|
- text: food temperature danger zone
|
|
- text: Small and medium size poly tanks are relatively inexpensive. They are also
|
|
easy to handle, so poly tanks are used in many smaller wineries. New and used
|
|
poly. drums are available in 20, 30, 40 and 55 gallon sizes, and they make excellent
|
|
wine storage containers. for home winemakers. Just like glass, wine storage containers
|
|
made of polyethylene advantages and disadvantages. They are lightweight, and polyethylene
|
|
drums can be handled and stored easily.
|
|
- text: what county is louin ms
|
|
- text: Map of the Old City of Shanghai. By the early 1400s, Shanghai had become important
|
|
enough for Ming dynasty engineers to begin dredging the Huangpu River (also known
|
|
as Shen). In 1553, a city wall was built around the Old Town (Nanshi) as a defense
|
|
against the depredations of the Wokou (Japanese pirates).
|
|
datasets:
|
|
- sentence-transformers/msmarco
|
|
pipeline_tag: feature-extraction
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- dot_accuracy@1
|
|
- dot_accuracy@3
|
|
- dot_accuracy@5
|
|
- dot_accuracy@10
|
|
- dot_precision@1
|
|
- dot_precision@3
|
|
- dot_precision@5
|
|
- dot_precision@10
|
|
- dot_recall@1
|
|
- dot_recall@3
|
|
- dot_recall@5
|
|
- dot_recall@10
|
|
- dot_ndcg@10
|
|
- dot_mrr@10
|
|
- dot_map@100
|
|
- query_active_dims
|
|
- query_sparsity_ratio
|
|
- corpus_active_dims
|
|
- corpus_sparsity_ratio
|
|
co2_eq_emissions:
|
|
emissions: 84.77861327949611
|
|
energy_consumed: 0.21810696440845714
|
|
source: codecarbon
|
|
training_type: fine-tuning
|
|
on_cloud: false
|
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
ram_total_size: 31.777088165283203
|
|
hours_used: 0.618
|
|
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
|
model-index:
|
|
- name: CoCondenser trained on Natural-Questions tuples
|
|
results:
|
|
- task:
|
|
type: sparse-information-retrieval
|
|
name: Sparse Information Retrieval
|
|
dataset:
|
|
name: NanoMSMARCO
|
|
type: NanoMSMARCO
|
|
metrics:
|
|
- type: dot_accuracy@1
|
|
value: 0.46
|
|
name: Dot Accuracy@1
|
|
- type: dot_accuracy@3
|
|
value: 0.64
|
|
name: Dot Accuracy@3
|
|
- type: dot_accuracy@5
|
|
value: 0.72
|
|
name: Dot Accuracy@5
|
|
- type: dot_accuracy@10
|
|
value: 0.82
|
|
name: Dot Accuracy@10
|
|
- type: dot_precision@1
|
|
value: 0.46
|
|
name: Dot Precision@1
|
|
- type: dot_precision@3
|
|
value: 0.21333333333333335
|
|
name: Dot Precision@3
|
|
- type: dot_precision@5
|
|
value: 0.14400000000000002
|
|
name: Dot Precision@5
|
|
- type: dot_precision@10
|
|
value: 0.08199999999999999
|
|
name: Dot Precision@10
|
|
- type: dot_recall@1
|
|
value: 0.46
|
|
name: Dot Recall@1
|
|
- type: dot_recall@3
|
|
value: 0.64
|
|
name: Dot Recall@3
|
|
- type: dot_recall@5
|
|
value: 0.72
|
|
name: Dot Recall@5
|
|
- type: dot_recall@10
|
|
value: 0.82
|
|
name: Dot Recall@10
|
|
- type: dot_ndcg@10
|
|
value: 0.6288613269928542
|
|
name: Dot Ndcg@10
|
|
- type: dot_mrr@10
|
|
value: 0.5688571428571428
|
|
name: Dot Mrr@10
|
|
- type: dot_map@100
|
|
value: 0.5779425698484522
|
|
name: Dot Map@100
|
|
- type: query_active_dims
|
|
value: 56.099998474121094
|
|
name: Query Active Dims
|
|
- type: query_sparsity_ratio
|
|
value: 0.9981619815715183
|
|
name: Query Sparsity Ratio
|
|
- type: corpus_active_dims
|
|
value: 192.40869140625
|
|
name: Corpus Active Dims
|
|
- type: corpus_sparsity_ratio
|
|
value: 0.9936960654149056
|
|
name: Corpus Sparsity Ratio
|
|
- task:
|
|
type: sparse-information-retrieval
|
|
name: Sparse Information Retrieval
|
|
dataset:
|
|
name: NanoNFCorpus
|
|
type: NanoNFCorpus
|
|
metrics:
|
|
- type: dot_accuracy@1
|
|
value: 0.38
|
|
name: Dot Accuracy@1
|
|
- type: dot_accuracy@3
|
|
value: 0.58
|
|
name: Dot Accuracy@3
|
|
- type: dot_accuracy@5
|
|
value: 0.62
|
|
name: Dot Accuracy@5
|
|
- type: dot_accuracy@10
|
|
value: 0.74
|
|
name: Dot Accuracy@10
|
|
- type: dot_precision@1
|
|
value: 0.38
|
|
name: Dot Precision@1
|
|
- type: dot_precision@3
|
|
value: 0.36
|
|
name: Dot Precision@3
|
|
- type: dot_precision@5
|
|
value: 0.316
|
|
name: Dot Precision@5
|
|
- type: dot_precision@10
|
|
value: 0.26999999999999996
|
|
name: Dot Precision@10
|
|
- type: dot_recall@1
|
|
value: 0.039663209420347775
|
|
name: Dot Recall@1
|
|
- type: dot_recall@3
|
|
value: 0.07520387221675563
|
|
name: Dot Recall@3
|
|
- type: dot_recall@5
|
|
value: 0.09363263999248954
|
|
name: Dot Recall@5
|
|
- type: dot_recall@10
|
|
value: 0.14669853217549625
|
|
name: Dot Recall@10
|
|
- type: dot_ndcg@10
|
|
value: 0.3303519560816792
|
|
name: Dot Ndcg@10
|
|
- type: dot_mrr@10
|
|
value: 0.49576984126984125
|
|
name: Dot Mrr@10
|
|
- type: dot_map@100
|
|
value: 0.14778057031019226
|
|
name: Dot Map@100
|
|
- type: query_active_dims
|
|
value: 53.68000030517578
|
|
name: Query Active Dims
|
|
- type: query_sparsity_ratio
|
|
value: 0.9982412685831473
|
|
name: Query Sparsity Ratio
|
|
- type: corpus_active_dims
|
|
value: 367.5431823730469
|
|
name: Corpus Active Dims
|
|
- type: corpus_sparsity_ratio
|
|
value: 0.9879580898246167
|
|
name: Corpus Sparsity Ratio
|
|
- task:
|
|
type: sparse-information-retrieval
|
|
name: Sparse Information Retrieval
|
|
dataset:
|
|
name: NanoNQ
|
|
type: NanoNQ
|
|
metrics:
|
|
- type: dot_accuracy@1
|
|
value: 0.5
|
|
name: Dot Accuracy@1
|
|
- type: dot_accuracy@3
|
|
value: 0.76
|
|
name: Dot Accuracy@3
|
|
- type: dot_accuracy@5
|
|
value: 0.8
|
|
name: Dot Accuracy@5
|
|
- type: dot_accuracy@10
|
|
value: 0.88
|
|
name: Dot Accuracy@10
|
|
- type: dot_precision@1
|
|
value: 0.5
|
|
name: Dot Precision@1
|
|
- type: dot_precision@3
|
|
value: 0.25999999999999995
|
|
name: Dot Precision@3
|
|
- type: dot_precision@5
|
|
value: 0.16799999999999998
|
|
name: Dot Precision@5
|
|
- type: dot_precision@10
|
|
value: 0.09599999999999997
|
|
name: Dot Precision@10
|
|
- type: dot_recall@1
|
|
value: 0.48
|
|
name: Dot Recall@1
|
|
- type: dot_recall@3
|
|
value: 0.71
|
|
name: Dot Recall@3
|
|
- type: dot_recall@5
|
|
value: 0.75
|
|
name: Dot Recall@5
|
|
- type: dot_recall@10
|
|
value: 0.85
|
|
name: Dot Recall@10
|
|
- type: dot_ndcg@10
|
|
value: 0.677150216479017
|
|
name: Dot Ndcg@10
|
|
- type: dot_mrr@10
|
|
value: 0.6328888888888887
|
|
name: Dot Mrr@10
|
|
- type: dot_map@100
|
|
value: 0.6167275355591967
|
|
name: Dot Map@100
|
|
- type: query_active_dims
|
|
value: 55.939998626708984
|
|
name: Query Active Dims
|
|
- type: query_sparsity_ratio
|
|
value: 0.9981672236869567
|
|
name: Query Sparsity Ratio
|
|
- type: corpus_active_dims
|
|
value: 228.83615112304688
|
|
name: Corpus Active Dims
|
|
- type: corpus_sparsity_ratio
|
|
value: 0.9925025833456834
|
|
name: Corpus Sparsity Ratio
|
|
- task:
|
|
type: sparse-nano-beir
|
|
name: Sparse Nano BEIR
|
|
dataset:
|
|
name: NanoBEIR mean
|
|
type: NanoBEIR_mean
|
|
metrics:
|
|
- type: dot_accuracy@1
|
|
value: 0.4466666666666667
|
|
name: Dot Accuracy@1
|
|
- type: dot_accuracy@3
|
|
value: 0.66
|
|
name: Dot Accuracy@3
|
|
- type: dot_accuracy@5
|
|
value: 0.7133333333333333
|
|
name: Dot Accuracy@5
|
|
- type: dot_accuracy@10
|
|
value: 0.8133333333333334
|
|
name: Dot Accuracy@10
|
|
- type: dot_precision@1
|
|
value: 0.4466666666666667
|
|
name: Dot Precision@1
|
|
- type: dot_precision@3
|
|
value: 0.27777777777777773
|
|
name: Dot Precision@3
|
|
- type: dot_precision@5
|
|
value: 0.20933333333333334
|
|
name: Dot Precision@5
|
|
- type: dot_precision@10
|
|
value: 0.14933333333333332
|
|
name: Dot Precision@10
|
|
- type: dot_recall@1
|
|
value: 0.3265544031401159
|
|
name: Dot Recall@1
|
|
- type: dot_recall@3
|
|
value: 0.47506795740558516
|
|
name: Dot Recall@3
|
|
- type: dot_recall@5
|
|
value: 0.5212108799974965
|
|
name: Dot Recall@5
|
|
- type: dot_recall@10
|
|
value: 0.605566177391832
|
|
name: Dot Recall@10
|
|
- type: dot_ndcg@10
|
|
value: 0.5454544998511834
|
|
name: Dot Ndcg@10
|
|
- type: dot_mrr@10
|
|
value: 0.5658386243386242
|
|
name: Dot Mrr@10
|
|
- type: dot_map@100
|
|
value: 0.44748355857261374
|
|
name: Dot Map@100
|
|
- type: query_active_dims
|
|
value: 55.23999913533529
|
|
name: Query Active Dims
|
|
- type: query_sparsity_ratio
|
|
value: 0.9981901579472073
|
|
name: Query Sparsity Ratio
|
|
- type: corpus_active_dims
|
|
value: 246.17159613336406
|
|
name: Corpus Active Dims
|
|
- type: corpus_sparsity_ratio
|
|
value: 0.9919346177795241
|
|
name: Corpus Sparsity Ratio
|
|
---
|
|
|
|
# CoCondenser trained on Natural-Questions tuples
|
|
|
|
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [Luyu/co-condenser-marco](https://huggingface.co/Luyu/co-condenser-marco) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** SPLADE Sparse Encoder
|
|
- **Base model:** [Luyu/co-condenser-marco](https://huggingface.co/Luyu/co-condenser-marco) <!-- at revision e0cef0ab2410aae0f0994366ddefb5649a266709 -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 30522 dimensions
|
|
- **Similarity Function:** Dot Product
|
|
- **Training Dataset:**
|
|
- [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco)
|
|
- **Language:** en
|
|
- **License:** apache-2.0
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SparseEncoder(
|
|
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
|
|
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SparseEncoder
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SparseEncoder("tomaarsen/splade-cocondenser-msmarco-margin-mse")
|
|
# Run inference
|
|
queries = [
|
|
"when did shanghai disneyland open",
|
|
]
|
|
documents = [
|
|
"Shanghai Disney officially opens: A peek inside. June 17, 2016, 6 p.m. After five years of construction, $5.5 billion in spending and a month of testing to work out the kinks, Shanghai Disney Resort opened to the public just before noon, Shanghai time, on Thursday, June 16 (which was 9 p.m. Wednesday in Anaheim, home of the original Disney park). Shanghai Disneyland features six themed areas, and the resort contains two hotels, a shopping district and 99 acres of gardens, lakes and parkland. We'll keep you updated throughout the week with new details and peeks inside the resort.",
|
|
'Map of the Old City of Shanghai. By the early 1400s, Shanghai had become important enough for Ming dynasty engineers to begin dredging the Huangpu River (also known as Shen). In 1553, a city wall was built around the Old Town (Nanshi) as a defense against the depredations of the Wokou (Japanese pirates).',
|
|
'The conflict is referred to in China as the War of Resistance against Japanese Aggression (1937-45) and the Anti-Fascist War. Japanâ\x80\x99s expansionist policy of the 1930s, driven by the military, was to set up what it called the Greater East Asia Co-Prosperity Sphere. Marco Polo Bridge, Beijing.A sphere.e are marking the anniversary of Germany and Japanâ\x80\x99s surrender in 1945, but it is legitimate to suggest that the incident that sparked the conflict that became WWII occurred not in Poland in 1939 but in China, near this eleven-arched bridge on the outskirts of Beijing, in July 1937. Letâ\x80\x99s look at the undisputed facts.',
|
|
]
|
|
query_embeddings = model.encode_query(queries)
|
|
document_embeddings = model.encode_document(documents)
|
|
print(query_embeddings.shape, document_embeddings.shape)
|
|
# [1, 30522] [3, 30522]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(query_embeddings, document_embeddings)
|
|
print(similarities)
|
|
# tensor([[31.8057, 19.5344, 12.4372]])
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Sparse Information Retrieval
|
|
|
|
* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
|
|
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
|
|
|
|
| Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
|
|
|:----------------------|:------------|:-------------|:-----------|
|
|
| dot_accuracy@1 | 0.46 | 0.38 | 0.5 |
|
|
| dot_accuracy@3 | 0.64 | 0.58 | 0.76 |
|
|
| dot_accuracy@5 | 0.72 | 0.62 | 0.8 |
|
|
| dot_accuracy@10 | 0.82 | 0.74 | 0.88 |
|
|
| dot_precision@1 | 0.46 | 0.38 | 0.5 |
|
|
| dot_precision@3 | 0.2133 | 0.36 | 0.26 |
|
|
| dot_precision@5 | 0.144 | 0.316 | 0.168 |
|
|
| dot_precision@10 | 0.082 | 0.27 | 0.096 |
|
|
| dot_recall@1 | 0.46 | 0.0397 | 0.48 |
|
|
| dot_recall@3 | 0.64 | 0.0752 | 0.71 |
|
|
| dot_recall@5 | 0.72 | 0.0936 | 0.75 |
|
|
| dot_recall@10 | 0.82 | 0.1467 | 0.85 |
|
|
| **dot_ndcg@10** | **0.6289** | **0.3304** | **0.6772** |
|
|
| dot_mrr@10 | 0.5689 | 0.4958 | 0.6329 |
|
|
| dot_map@100 | 0.5779 | 0.1478 | 0.6167 |
|
|
| query_active_dims | 56.1 | 53.68 | 55.94 |
|
|
| query_sparsity_ratio | 0.9982 | 0.9982 | 0.9982 |
|
|
| corpus_active_dims | 192.4087 | 367.5432 | 228.8362 |
|
|
| corpus_sparsity_ratio | 0.9937 | 0.988 | 0.9925 |
|
|
|
|
#### Sparse Nano BEIR
|
|
|
|
* Dataset: `NanoBEIR_mean`
|
|
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
|
|
```json
|
|
{
|
|
"dataset_names": [
|
|
"msmarco",
|
|
"nfcorpus",
|
|
"nq"
|
|
]
|
|
}
|
|
```
|
|
|
|
| Metric | Value |
|
|
|:----------------------|:-----------|
|
|
| dot_accuracy@1 | 0.4467 |
|
|
| dot_accuracy@3 | 0.66 |
|
|
| dot_accuracy@5 | 0.7133 |
|
|
| dot_accuracy@10 | 0.8133 |
|
|
| dot_precision@1 | 0.4467 |
|
|
| dot_precision@3 | 0.2778 |
|
|
| dot_precision@5 | 0.2093 |
|
|
| dot_precision@10 | 0.1493 |
|
|
| dot_recall@1 | 0.3266 |
|
|
| dot_recall@3 | 0.4751 |
|
|
| dot_recall@5 | 0.5212 |
|
|
| dot_recall@10 | 0.6056 |
|
|
| **dot_ndcg@10** | **0.5455** |
|
|
| dot_mrr@10 | 0.5658 |
|
|
| dot_map@100 | 0.4475 |
|
|
| query_active_dims | 55.24 |
|
|
| query_sparsity_ratio | 0.9982 |
|
|
| corpus_active_dims | 246.1716 |
|
|
| corpus_sparsity_ratio | 0.9919 |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### msmarco
|
|
|
|
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
|
|
* Size: 90,000 training samples
|
|
* Columns: <code>score</code>, <code>query</code>, <code>positive</code>, and <code>negative</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | score | query | positive | negative |
|
|
|:--------|:--------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
|
| type | float | string | string | string |
|
|
| details | <ul><li>min: -2.22</li><li>mean: 13.59</li><li>max: 22.53</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.05 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 81.18 tokens</li><li>max: 203 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 77.08 tokens</li><li>max: 249 tokens</li></ul> |
|
|
* Samples:
|
|
| score | query | positive | negative |
|
|
|:-------------------------------|:-----------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| <code>4.470368494590124</code> | <code>where does the bile duct carry its secretions</code> | <code>The function of the common bile duct is to carry bile from the liver and the gallbladder into the duodenum, the top of the small intestine directly after the stomach. The bile it carries interacts with ingested fats and fat-soluble vitamins to enable them to be absorbed by the intestine.</code> | <code>The gall bladder is a pouch-shaped organ that stores the bile produced by the liver. The gall bladder shares a vessel, called the common bile duct, with the liver. When bile is needed, it moves through the common bile duct into the first part of the small intestine, the duodenum. It is here that the bile breaks down fat.</code> |
|
|
| <code>9.550037781397503</code> | <code>definition of reverse auction</code> | <code>Reverse auction. A reverse auction is a type of auction in which the roles of buyer and seller are reversed. In an ordinary auction (also known as a 'forward auction'), buyers compete to obtain goods or services by offering increasingly higher prices. In a reverse auction, the sellers compete to obtain business from the buyer and prices will typically decrease as the sellers underbid each other.</code> | <code>No-reserve auction. A No-reserve auction (NR), also known as an absolute auction, is an auction in which the item for sale will be sold regardless of price. From the seller's perspective, advertising an auction as having no reserve price can be desirable because it potentially attracts a greater number of bidders due to the possibility of a bargain.</code> |
|
|
| <code>19.58259622255961</code> | <code>how do i prevent diverticulitis</code> | <code>Follow Following Unfollow Pending Disabled. A , Gastroenterology, answered. The suggestion to prevent diverticulitis is to eat a diet high in fiber, and that includes high-fiber whole grains, fruits, vegetables, nuts, and seeds. Iâm aware that some gastroenterologists say to avoid all seeds and nuts, so some of you are nuts enough to wash tomato seeds from slices and pick free poppy seeds from buns.</code> | <code>The test is fast and easy especially with the newer CT scanners. But does it provide the information needed? CT KUBs are used to screen for a variety of intra-abdominal conditions, including appendicitis, kidney stones, diverticulitis, and others.</code> |
|
|
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss": "SparseMarginMSELoss",
|
|
"lambda_corpus": 0.08,
|
|
"lambda_query": 0.1
|
|
}
|
|
```
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### msmarco
|
|
|
|
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
|
|
* Size: 10,000 evaluation samples
|
|
* Columns: <code>score</code>, <code>query</code>, <code>positive</code>, and <code>negative</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | score | query | positive | negative |
|
|
|:--------|:-------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
|
| type | float | string | string | string |
|
|
| details | <ul><li>min: -1.34</li><li>mean: 13.49</li><li>max: 22.2</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.85 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 80.48 tokens</li><li>max: 211 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 77.44 tokens</li><li>max: 209 tokens</li></ul> |
|
|
* Samples:
|
|
| score | query | positive | negative |
|
|
|:-------------------------------|:-----------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
| <code>15.64028427998225</code> | <code>what is a protected seedbed</code> | <code>A seedbed is a plot of garden set aside to grow vegetables seeds, which can later be transplanted. seedbed is a plot of garden set aside to grow vegetables seeds, which can later be transplanted.</code> | <code>Several articles within the Confederate Statesâ Constitution specifically protected slavery within the Confederacy, but some articles of the U.S. Constitution also protected slaveryâthe Emancipation Proclamation drew a clearer distinction between the two.</code> |
|
|
| <code>6.375148057937622</code> | <code>who founded ecuador</code> | <code>The first Spanish settlement in Ecuador was established in 1534 at Quito on the site of an important Incan town of the same name. Another settlement was established four years later near the river Guayas in Guayaquil.</code> | <code>Zuleta is a colonial working farm of 4,000 acres (2,000 hectares) that belongs to the family of Mr. Galo Plaza lasso, a former president of Ecuador, for more than 100 years. It was chosen as one of the worldâs âTop Ten Findsâ by Outside magazine and named as one of the best Ecuador Hotel by National Geographic Traveler.</code> |
|
|
| <code>8.436618288358051</code> | <code>what is aol problem</code> | <code>AOL problems. Lots of people are reporting ongoing (RTR:GE) messages from AOL today. This indicates the AOL mail servers are having problems and canât accept mail. This has nothing to do with spam, filtering or malicious email. This is simply their servers arenât functioning as well as they should be and so AOL canât accept all the mail thrown at them. These types of blocks resolve themselves. Update Feb 8, 2016: AOL users are having problems logging in.</code> | <code>Executive Director. I have read these complaints of poor service and agree 110%. I'm a college professor and give extra credit to all AOL users and over the 100% highest grade. I thought I phoned AOL and get some chap in India who is a proven scam man and I'm the poor American SOB who gets whacked.</code> |
|
|
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss": "SparseMarginMSELoss",
|
|
"lambda_corpus": 0.08,
|
|
"lambda_query": 0.1
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `learning_rate`: 2e-05
|
|
- `num_train_epochs`: 1
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
- `batch_sampler`: no_duplicates
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 2e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 1
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: None
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `include_for_metrics`: []
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `average_tokens_across_devices`: False
|
|
- `prompts`: None
|
|
- `batch_sampler`: no_duplicates
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
- `router_mapping`: {}
|
|
- `learning_rate_mapping`: {}
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
|
|
|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|
|
|
| 0.0178 | 100 | 805201.68 | - | - | - | - | - |
|
|
| 0.0356 | 200 | 11999.3975 | - | - | - | - | - |
|
|
| 0.0533 | 300 | 124.0031 | - | - | - | - | - |
|
|
| 0.0711 | 400 | 62.6813 | - | - | - | - | - |
|
|
| 0.0889 | 500 | 46.0329 | 49.7658 | 0.4890 | 0.2543 | 0.5131 | 0.4188 |
|
|
| 0.1067 | 600 | 41.2877 | - | - | - | - | - |
|
|
| 0.1244 | 700 | 35.3636 | - | - | - | - | - |
|
|
| 0.1422 | 800 | 33.3727 | - | - | - | - | - |
|
|
| 0.16 | 900 | 29.389 | - | - | - | - | - |
|
|
| 0.1778 | 1000 | 31.2482 | 28.1527 | 0.5652 | 0.2875 | 0.5423 | 0.4650 |
|
|
| 0.1956 | 1100 | 31.43 | - | - | - | - | - |
|
|
| 0.2133 | 1200 | 27.9919 | - | - | - | - | - |
|
|
| 0.2311 | 1300 | 26.9214 | - | - | - | - | - |
|
|
| 0.2489 | 1400 | 27.5533 | - | - | - | - | - |
|
|
| 0.2667 | 1500 | 25.7473 | 26.8466 | 0.5837 | 0.3265 | 0.6268 | 0.5123 |
|
|
| 0.2844 | 1600 | 26.7899 | - | - | - | - | - |
|
|
| 0.3022 | 1700 | 24.0652 | - | - | - | - | - |
|
|
| 0.32 | 1800 | 23.5837 | - | - | - | - | - |
|
|
| 0.3378 | 1900 | 24.1051 | - | - | - | - | - |
|
|
| 0.3556 | 2000 | 24.6901 | 22.0851 | 0.6018 | 0.3325 | 0.6359 | 0.5234 |
|
|
| 0.3733 | 2100 | 21.5136 | - | - | - | - | - |
|
|
| 0.3911 | 2200 | 22.066 | - | - | - | - | - |
|
|
| 0.4089 | 2300 | 20.8234 | - | - | - | - | - |
|
|
| 0.4267 | 2400 | 20.1988 | - | - | - | - | - |
|
|
| 0.4444 | 2500 | 20.0342 | 20.3437 | 0.5901 | 0.3222 | 0.6010 | 0.5044 |
|
|
| 0.4622 | 2600 | 18.8835 | - | - | - | - | - |
|
|
| 0.48 | 2700 | 19.4797 | - | - | - | - | - |
|
|
| 0.4978 | 2800 | 19.6199 | - | - | - | - | - |
|
|
| 0.5156 | 2900 | 16.6963 | - | - | - | - | - |
|
|
| 0.5333 | 3000 | 19.9204 | 18.0851 | 0.5915 | 0.3111 | 0.6323 | 0.5116 |
|
|
| 0.5511 | 3100 | 18.7849 | - | - | - | - | - |
|
|
| 0.5689 | 3200 | 18.3169 | - | - | - | - | - |
|
|
| 0.5867 | 3300 | 17.1938 | - | - | - | - | - |
|
|
| 0.6044 | 3400 | 18.0807 | - | - | - | - | - |
|
|
| 0.6222 | 3500 | 16.7721 | 20.1195 | 0.6012 | 0.3119 | 0.6337 | 0.5156 |
|
|
| 0.64 | 3600 | 16.7909 | - | - | - | - | - |
|
|
| 0.6578 | 3700 | 16.4954 | - | - | - | - | - |
|
|
| 0.6756 | 3800 | 16.3734 | - | - | - | - | - |
|
|
| 0.6933 | 3900 | 17.2231 | - | - | - | - | - |
|
|
| 0.7111 | 4000 | 16.8486 | 17.5785 | 0.6228 | 0.3423 | 0.6553 | 0.5401 |
|
|
| 0.7289 | 4100 | 18.2939 | - | - | - | - | - |
|
|
| 0.7467 | 4200 | 16.1108 | - | - | - | - | - |
|
|
| 0.7644 | 4300 | 16.878 | - | - | - | - | - |
|
|
| 0.7822 | 4400 | 15.6163 | - | - | - | - | - |
|
|
| 0.8 | 4500 | 15.8337 | 16.1847 | 0.6286 | 0.3376 | 0.6639 | 0.5434 |
|
|
| 0.8178 | 4600 | 15.5014 | - | - | - | - | - |
|
|
| 0.8356 | 4700 | 15.7579 | - | - | - | - | - |
|
|
| 0.8533 | 4800 | 15.9361 | - | - | - | - | - |
|
|
| 0.8711 | 4900 | 16.3308 | - | - | - | - | - |
|
|
| 0.8889 | 5000 | 14.8395 | 17.4054 | 0.6221 | 0.3280 | 0.6853 | 0.5451 |
|
|
| 0.9067 | 5100 | 14.8655 | - | - | - | - | - |
|
|
| 0.9244 | 5200 | 14.6498 | - | - | - | - | - |
|
|
| 0.9422 | 5300 | 15.5189 | - | - | - | - | - |
|
|
| 0.96 | 5400 | 14.608 | - | - | - | - | - |
|
|
| 0.9778 | 5500 | 15.6019 | 16.4883 | 0.6298 | 0.3317 | 0.6831 | 0.5482 |
|
|
| 0.9956 | 5600 | 14.6263 | - | - | - | - | - |
|
|
| -1 | -1 | - | - | 0.6289 | 0.3304 | 0.6772 | 0.5455 |
|
|
|
|
|
|
### Environmental Impact
|
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
|
- **Energy Consumed**: 0.218 kWh
|
|
- **Carbon Emitted**: 0.085 kg of CO2
|
|
- **Hours Used**: 0.618 hours
|
|
|
|
### Training Hardware
|
|
- **On Cloud**: No
|
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
- **RAM Size**: 31.78 GB
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.6
|
|
- Sentence Transformers: 4.2.0.dev0
|
|
- Transformers: 4.52.4
|
|
- PyTorch: 2.6.0+cu124
|
|
- Accelerate: 1.5.1
|
|
- Datasets: 2.21.0
|
|
- Tokenizers: 0.21.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### SpladeLoss
|
|
```bibtex
|
|
@misc{formal2022distillationhardnegativesampling,
|
|
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
|
|
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
|
|
year={2022},
|
|
eprint={2205.04733},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.IR},
|
|
url={https://arxiv.org/abs/2205.04733},
|
|
}
|
|
```
|
|
|
|
#### SparseMarginMSELoss
|
|
```bibtex
|
|
@misc{hofstätter2021improving,
|
|
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
|
|
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
|
|
year={2021},
|
|
eprint={2010.02666},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.IR}
|
|
}
|
|
```
|
|
|
|
#### FlopsLoss
|
|
```bibtex
|
|
@article{paria2020minimizing,
|
|
title={Minimizing flops to learn efficient sparse representations},
|
|
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
|
|
journal={arXiv preprint arXiv:2004.05665},
|
|
year={2020}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |