tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
70c77d5 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - splade
  - generated_from_trainer
  - dataset_size:99000
  - loss:SpladeLoss
  - loss:SparseMultipleNegativesRankingLoss
  - loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
  - source_sentence: who are the dancers in the limp bizkit rollin video
    sentences:
      - >-
        Voting age Before the Second World War, the voting age in almost all
        countries was 21 years or higher. Czechoslovakia was the first to reduce
        the voting age to 20 years in 1946, and by 1968 a total of 17 countries
        had lowered their voting age.[1] Many countries, particularly in Western
        Europe, reduced their voting ages to 18 years during the 1970s, starting
        with the United Kingdom (1969),[2] with the United States (26th
        Amendment) (1971), Canada, West Germany (1972), Australia (1974), France
        (1974), and others following soon afterwards. By the end of the 20th
        century, 18 had become by far the most common voting age. However, a few
        countries maintain a voting age of 20 years or higher. It was argued
        that young men could be drafted to go to war at 18, and many people felt
        they should be able to vote at the age of 18.[3]
      - >-
        Rollin' (Limp Bizkit song) The music video was filmed atop the South
        Tower of the former World Trade Center in New York City. The
        introduction features Ben Stiller and Stephen Dorff mistaking Fred Durst
        for the valet and giving him the keys to their Bentley Azure. Also
        making a cameo is break dancer Mr. Wiggles. The rest of the video has
        several cuts to Durst and his bandmates hanging out of the Bentley as
        they drive about Manhattan. The song Ben Stiller is playing at the
        beginning is "My Generation" from the same album. The video also
        features scenes of Fred Durst with five girls dancing in a room. The
        video was filmed around the same time as the film Zoolander, which
        explains Stiller and Dorff's appearance. Fred Durst has a small cameo in
        that film.
      - >-
        Eobard Thawne When Thawne reappears, he murders the revived Johnny
        Quick,[9] before proceeding to trap Barry and the revived Max Mercury
        inside the negative Speed Force. Thawne then attempts to kill Wally
        West's children through their connection to the Speed Force in front of
        Linda Park-West, only to be stopped by Jay Garrick and Bart Allen.
        Thawne defeats Jay and prepares to kill Bart, but Barry, Max, Wally,
        Jesse Quick, and Impulse arrive to prevent the villain from doing
        so.[8][10] In the ensuing fight, Thawne reveals that he is responsible
        for every tragedy that has occurred in Barry's life, including the death
        of his mother. Thawne then decides to destroy everything the Flash holds
        dear by killing Barry's wife, Iris, before they even met.[10]
  - source_sentence: who wins season 14 of hell's kitchen
    sentences:
      - >-
        Hell's Kitchen (U.S. season 14) Season 14 of the American competitive
        reality television series Hell's Kitchen premiered on March 3, 2015 on
        Fox. The prize is a head chef position at Gordon Ramsay Pub & Grill in
        Caesars Atlantic City.[1] Gordon Ramsay returned as head chef with Andi
        Van Willigan and James Avery returning as sous-chefs for both their
        respective kitchens as well as Marino Monferrato as the maître d'.
        Executive chef Meghan Gill from Roanoke, Virginia, won the competition,
        thus becoming the fourteenth winner of Hell's Kitchen.
      - >-
        Maze Runner: The Death Cure On April 22, 2017, the studio delayed the
        release date once again, to February 9, 2018, in order to allow more
        time for post-production; months later, on August 25, the studio moved
        the release forward two weeks.[17] The film will premiere on January 26,
        2018 in 3D, IMAX and IMAX 3D.[18][19]
      - >-
        North American Plate On its western edge, the Farallon Plate has been
        subducting under the North American Plate since the Jurassic Period. The
        Farallon Plate has almost completely subducted beneath the western
        portion of the North American Plate leaving that part of the North
        American Plate in contact with the Pacific Plate as the San Andreas
        Fault. The Juan de Fuca, Explorer, Gorda, Rivera, Cocos and Nazca plates
        are remnants of the Farallon Plate.
  - source_sentence: who played the dj in the movie the warriors
    sentences:
      - "List of Arrow episodes As of May\_17, 2018,[update] 138 episodes of Arrow\_have aired, concluding the\_sixth season. On April 2, 2018, the CW renewed the series for a seventh season.[1]"
      - >-
        Lynne Thigpen Cherlynne Theresa "Lynne" Thigpen (December 22, 1948 –
        March 12, 2003) was an American actress, best known for her role as "The
        Chief" of ACME in the various Carmen Sandiego television series and
        computer games from 1991 to 1997. For her varied television work,
        Thigpen was nominated for six Daytime Emmy Awards; she won a Tony Award
        in 1997 for portraying Dr. Judith Kaufman in An American Daughter.
      - >-
        The Washington Post The Washington Post is an American daily newspaper.
        It is the most widely circulated newspaper published in Washington,
        D.C., and was founded on December 6, 1877,[7] making it the area's
        oldest extant newspaper. In February 2017, amid a barrage of criticism
        from President Donald Trump over the paper's coverage of his campaign
        and early presidency as well as concerns among the American press about
        Trump's criticism and threats against journalists who provide coverage
        he deems unfavorable, the Post adopted the slogan "Democracy Dies in
        Darkness".[8]
  - source_sentence: how old was messi when he started his career
    sentences:
      - >-
        Lionel Messi Born and raised in central Argentina, Messi was diagnosed
        with a growth hormone deficiency as a child. At age 13, he relocated to
        Spain to join Barcelona, who agreed to pay for his medical treatment.
        After a fast progression through Barcelona's youth academy, Messi made
        his competitive debut aged 17 in October 2004. Despite being
        injury-prone during his early career, he established himself as an
        integral player for the club within the next three years, finishing 2007
        as a finalist for both the Ballon d'Or and FIFA World Player of the Year
        award, a feat he repeated the following year. His first uninterrupted
        campaign came in the 2008–09 season, during which he helped Barcelona
        achieve the first treble in Spanish football. At 22 years old, Messi won
        the Ballon d'Or and FIFA World Player of the Year award by record voting
        margins.
      - >-
        We Are Marshall Filming of We Are Marshall commenced on April 3, 2006,
        in Huntington, West Virginia, and was completed in Atlanta, Georgia. The
        premiere for the film was held at the Keith Albee Theater on December
        12, 2006, in Huntington; other special screenings were held at Pullman
        Square. The movie was released nationwide on December 22, 2006.
      - >-
        One Fish, Two Fish, Red Fish, Blue Fish One Fish, Two Fish, Red Fish,
        Blue Fish is a 1960 children's book by Dr. Seuss. It is a simple rhyming
        book for beginning readers, with a freewheeling plot about a boy and a
        girl named Jay and Kay and the many amazing creatures they have for
        friends and pets. Interspersed are some rather surreal and unrelated
        skits, such as a man named Ned whose feet stick out from his bed, and a
        creature who has a bird in his ear. As of 2001, over 6 million copies of
        the book had been sold, placing it 13th on a list of "All-Time
        Bestselling Children's Books" from Publishers Weekly.[1] Based on a 2007
        online poll, the United States' National Education Association labor
        union named the book one of its "Teachers' Top 100 Books for
        Children."[2]
  - source_sentence: is send in the clowns from a musical
    sentences:
      - >-
        Money in the Bank ladder match The first match was contested in 2005 at
        WrestleMania 21, after being invented (in kayfabe) by Chris Jericho.[1]
        At the time, it was exclusive to wrestlers of the Raw brand, and Edge
        won the inaugural match.[1] From then until 2010, the Money in the Bank
        ladder match, now open to all WWE brands, became a WrestleMania
        mainstay. 2010 saw a second and third Money in the Bank ladder match
        when the Money in the Bank pay-per-view debuted in July. Unlike the
        matches at WrestleMania, this new event featured two such ladder matches
        – one each for a contract for the WWE Championship and World
        Heavyweight Championship, respectively.
      - >-
        The Suite Life on Deck The Suite Life on Deck is an American sitcom that
        aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a
        sequel/spin-off of the Disney Channel Original Series The Suite Life of
        Zack & Cody. The series follows twin brothers Zack and Cody Martin and
        hotel heiress London Tipton in a new setting, the SS Tipton, where they
        attend classes at "Seven Seas High School" and meet Bailey Pickett while
        Mr. Moseby manages the ship. The ship travels around the world to
        nations such as Italy, France, Greece, India, Sweden and the United
        Kingdom where the characters experience different cultures, adventures,
        and situations.[1]
      - >-
        Send In the Clowns "Send In the Clowns" is a song written by Stephen
        Sondheim for the 1973 musical A Little Night Music, an adaptation of
        Ingmar Bergman's film Smiles of a Summer Night. It is a ballad from Act
        Two, in which the character Desirée reflects on the ironies and
        disappointments of her life. Among other things, she looks back on an
        affair years earlier with the lawyer Fredrik, who was deeply in love
        with her but whose marriage proposals she had rejected. Meeting him
        after so long, she realizes she is in love with him and finally ready to
        marry him, but now it is he who rejects her: he is in an unconsummated
        marriage with a much younger woman. Desirée proposes marriage to rescue
        him from this situation, but he declines, citing his dedication to his
        bride. Reacting to his rejection, Desirée sings this song. The song is
        later reprised as a coda after Fredrik's young wife runs away with his
        son, and Fredrik is finally free to accept Desirée's offer.[1]
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - row_non_zero_mean_query
  - row_sparsity_mean_query
  - row_non_zero_mean_corpus
  - row_sparsity_mean_corpus
co2_eq_emissions:
  emissions: 32.749162711505036
  energy_consumed: 0.08425262208968576
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.292
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: splade-distilbert-base-uncased trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.24
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.44
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.72
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.24
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.14666666666666664
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.12000000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07200000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.24
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.44
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.6
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.72
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.46533877878819696
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.3856269841269841
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3974184036014145
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 15.779999732971191
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9994829297065735
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 25.729328155517578
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9991570711135864
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.22
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.42
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.74
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.22
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.13999999999999999
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.12000000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07400000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.22
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.42
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.6
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.74
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.46328494594550307
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.37662698412698403
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3856610333651542
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 15.380000114440918
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9994961023330688
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 26.596866607666016
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9991285800933838
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.42
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.52
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.56
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2866666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.264
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.214
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.01879480879384032
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.05027421919442009
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.08706875727827264
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.11178880663195827
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2582539565166507
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.38549999999999995
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.1034946476704924
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 20.18000030517578
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9993388652801514
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 30.07179069519043
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9990148544311523
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.52
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.52
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.58
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3133333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.288
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.226
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.021422381525060468
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.0742401436593227
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.08995450762658255
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.11319066947710729
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.27630767880389084
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.42138888888888887
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.11387493422516994
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 18.81999969482422
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9993834495544434
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 30.65966796875
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9989954829216003
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.32
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.58
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.64
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.32
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.16666666666666663
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.11599999999999999
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.064
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.31
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.49
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.56
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.61
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.46811217927927307
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.43099999999999994
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4334878570971412
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 15.079999923706055
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9995059370994568
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 22.96107292175293
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.999247670173645
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.68
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.16666666666666663
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.124
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.29
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.49
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.6
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.66
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4796509872234161
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.42804761904761895
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4288636915548681
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 14.399999618530273
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.999528169631958
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 23.73485565185547
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9992223381996155
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.2866666666666667
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.4533333333333333
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.5666666666666668
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.64
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.2866666666666667
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.19999999999999998
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.16666666666666666
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.11666666666666668
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.1895982695979468
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.3267580730648067
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.4156895857594242
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4805962688773194
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.39723497152804027
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.40070899470899474
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3114669694563494
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 17.013333320617676
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9994425773620605
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 26.254063924153645
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9991398652394613
            name: Row Sparsity Mean Corpus
          - type: dot_accuracy@1
            value: 0.4023861852433281
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5827315541601256
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6721193092621665
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7583987441130299
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4023861852433281
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.25922553636839346
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.2099277864992151
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.14982417582417581
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.22672192221710946
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.36838967779676207
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.44570232082548333
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5264378082924004
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4631187549753249
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5167952081931673
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.38677121563396466
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 19.27265313955454
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9993685804880582
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 27.068602635310246
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9991131195655236
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.18
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.36
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.44
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.6
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.18
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.13333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.1
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.07
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.1733333333333333
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.2033333333333333
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.28
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.216118762316258
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.2994126984126984
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.16840852597130174
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 25.020000457763672
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9991803169250488
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 27.777875900268555
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9990898966789246
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: dot_accuracy@1
            value: 0.6
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.82
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.86
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.6
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.48666666666666664
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.4439999999999999
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.4000000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.05376110547712118
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.15092123200468407
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.19238478534118364
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.2793082705020891
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4933229100355268
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7174126984126984
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3647742683351921
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 14.34000015258789
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9995301961898804
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 22.812902450561523
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9992524981498718
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.62
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.82
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.9
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.62
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.28
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.184
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.092
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.61
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.7866666666666666
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.8566666666666666
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.8566666666666666
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7518512751926597
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7293333333333335
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.7119416486291485
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 17.84000015258789
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9994155168533325
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 25.645116806030273
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9991597533226013
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: dot_accuracy@1
            value: 0.22
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.32
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.44
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.54
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.22
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.1333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.11599999999999999
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07600000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.138
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.25
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.32938888888888884
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.3908015873015873
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.29315131681028644
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.30430158730158724
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.2444001739214205
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 18.940000534057617
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9993795156478882
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 27.020782470703125
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9991146922111511
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: dot_accuracy@1
            value: 0.64
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.82
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.82
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.86
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.64
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.37333333333333324
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.23199999999999996
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.132
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.32
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.56
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.58
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.66
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.60467671511462
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7286666666666669
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5280557928272471
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 18.799999237060547
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9993841648101807
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 24.752653121948242
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.999189019203186
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: dot_accuracy@1
            value: 0.64
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.84
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.88
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.98
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.64
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.32
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.21999999999999997
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.12399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.5740000000000001
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.768
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.8446666666666667
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9553333333333334
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7881541877243683
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7535238095238094
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.727066872303161
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 17.780000686645508
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9994174242019653
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 19.436979293823242
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9993631839752197
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.48
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.76
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.21333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.20400000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.154
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.07666666666666667
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.13366666666666668
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.21066666666666667
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.31666666666666665
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.29354115188538094
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4672380952380951
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.21425734227573925
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 24.84000015258789
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9991861581802368
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 34.34458923339844
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9988747239112854
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: dot_accuracy@1
            value: 0.18
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.4
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.54
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.18
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.13333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.10800000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.18
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.4
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.54
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.7
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4216491858751158
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.33469047619047615
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.34714031247291627
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 29.360000610351562
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9990381002426147
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 29.988996505737305
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9990174770355225
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: dot_accuracy@1
            value: 0.38
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.66
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.38
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.136
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07400000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.355
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.475
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.59
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.64
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5021918146434317
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.467
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.462876176092865
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 19.799999237060547
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9993513226509094
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 27.219938278198242
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9991081357002258
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: dot_accuracy@1
            value: 0.5510204081632653
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7755102040816326
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8775510204081632
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9591836734693877
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5510204081632653
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.4965986394557823
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.4530612244897959
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.3857142857142857
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.038534835153574185
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.1072377690272331
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.15706865554129606
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.25172431385375454
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4366428831087667
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6906948493683187
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.33070503126735623
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 15.22449016571045
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.99950110912323
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 31.900609970092773
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9989547729492188
            name: Row Sparsity Mean Corpus

splade-distilbert-base-uncased trained on Natural Questions

This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: distilbert/distilbert-base-uncased
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-nq-e-3")
# Run inference
sentences = [
    'is send in the clowns from a musical',
    'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
    'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

  • Datasets: NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoMSMARCO NanoNFCorpus NanoNQ NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.22 0.34 0.3 0.18 0.6 0.62 0.22 0.64 0.64 0.36 0.18 0.38 0.551
dot_accuracy@3 0.42 0.52 0.5 0.36 0.82 0.82 0.32 0.82 0.84 0.48 0.4 0.5 0.7755
dot_accuracy@5 0.6 0.52 0.62 0.44 0.86 0.9 0.44 0.82 0.88 0.62 0.54 0.62 0.8776
dot_accuracy@10 0.74 0.58 0.68 0.6 0.9 0.9 0.54 0.86 0.98 0.76 0.7 0.66 0.9592
dot_precision@1 0.22 0.34 0.3 0.18 0.6 0.62 0.22 0.64 0.64 0.36 0.18 0.38 0.551
dot_precision@3 0.14 0.3133 0.1667 0.1333 0.4867 0.28 0.1333 0.3733 0.32 0.2133 0.1333 0.18 0.4966
dot_precision@5 0.12 0.288 0.124 0.1 0.444 0.184 0.116 0.232 0.22 0.204 0.108 0.136 0.4531
dot_precision@10 0.074 0.226 0.07 0.07 0.4 0.092 0.076 0.132 0.124 0.154 0.07 0.074 0.3857
dot_recall@1 0.22 0.0214 0.29 0.07 0.0538 0.61 0.138 0.32 0.574 0.0767 0.18 0.355 0.0385
dot_recall@3 0.42 0.0742 0.49 0.1733 0.1509 0.7867 0.25 0.56 0.768 0.1337 0.4 0.475 0.1072
dot_recall@5 0.6 0.09 0.6 0.2033 0.1924 0.8567 0.3294 0.58 0.8447 0.2107 0.54 0.59 0.1571
dot_recall@10 0.74 0.1132 0.66 0.28 0.2793 0.8567 0.3908 0.66 0.9553 0.3167 0.7 0.64 0.2517
dot_ndcg@10 0.4633 0.2763 0.4797 0.2161 0.4933 0.7519 0.2932 0.6047 0.7882 0.2935 0.4216 0.5022 0.4366
dot_mrr@10 0.3766 0.4214 0.428 0.2994 0.7174 0.7293 0.3043 0.7287 0.7535 0.4672 0.3347 0.467 0.6907
dot_map@100 0.3857 0.1139 0.4289 0.1684 0.3648 0.7119 0.2444 0.5281 0.7271 0.2143 0.3471 0.4629 0.3307
row_non_zero_mean_query 15.38 18.82 14.4 25.02 14.34 17.84 18.94 18.8 17.78 24.84 29.36 19.8 15.2245
row_sparsity_mean_query 0.9995 0.9994 0.9995 0.9992 0.9995 0.9994 0.9994 0.9994 0.9994 0.9992 0.999 0.9994 0.9995
row_non_zero_mean_corpus 26.5969 30.6597 23.7349 27.7779 22.8129 25.6451 27.0208 24.7527 19.437 34.3446 29.989 27.2199 31.9006
row_sparsity_mean_corpus 0.9991 0.999 0.9992 0.9991 0.9993 0.9992 0.9991 0.9992 0.9994 0.9989 0.999 0.9991 0.999

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.2867
dot_accuracy@3 0.4533
dot_accuracy@5 0.5667
dot_accuracy@10 0.64
dot_precision@1 0.2867
dot_precision@3 0.2
dot_precision@5 0.1667
dot_precision@10 0.1167
dot_recall@1 0.1896
dot_recall@3 0.3268
dot_recall@5 0.4157
dot_recall@10 0.4806
dot_ndcg@10 0.3972
dot_mrr@10 0.4007
dot_map@100 0.3115
row_non_zero_mean_query 17.0133
row_sparsity_mean_query 0.9994
row_non_zero_mean_corpus 26.2541
row_sparsity_mean_corpus 0.9991

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4024
dot_accuracy@3 0.5827
dot_accuracy@5 0.6721
dot_accuracy@10 0.7584
dot_precision@1 0.4024
dot_precision@3 0.2592
dot_precision@5 0.2099
dot_precision@10 0.1498
dot_recall@1 0.2267
dot_recall@3 0.3684
dot_recall@5 0.4457
dot_recall@10 0.5264
dot_ndcg@10 0.4631
dot_mrr@10 0.5168
dot_map@100 0.3868
row_non_zero_mean_query 19.2727
row_sparsity_mean_query 0.9994
row_non_zero_mean_corpus 27.0686
row_sparsity_mean_corpus 0.9991

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 0.003, 'lambda_query': 0.005}
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 0.003, 'lambda_query': 0.005}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10
0.0242 200 4.6206 - - - - - - - - - - - - - - -
0.0485 400 0.074 - - - - - - - - - - - - - - -
0.0727 600 0.0441 - - - - - - - - - - - - - - -
0.0970 800 0.0288 - - - - - - - - - - - - - - -
0.1212 1000 0.0395 - - - - - - - - - - - - - - -
0.1455 1200 0.0387 - - - - - - - - - - - - - - -
0.1697 1400 0.039 - - - - - - - - - - - - - - -
0.1939 1600 0.0274 - - - - - - - - - - - - - - -
0.2 1650 - 0.0425 0.4834 0.2578 0.4469 0.3960 - - - - - - - - - -
0.2182 1800 0.0317 - - - - - - - - - - - - - - -
0.2424 2000 0.0563 - - - - - - - - - - - - - - -
0.2667 2200 0.0521 - - - - - - - - - - - - - - -
0.2909 2400 0.0481 - - - - - - - - - - - - - - -
0.3152 2600 0.0562 - - - - - - - - - - - - - - -
0.3394 2800 0.0524 - - - - - - - - - - - - - - -
0.3636 3000 0.0477 - - - - - - - - - - - - - - -
0.3879 3200 0.0579 - - - - - - - - - - - - - - -
0.4 3300 - 0.0544 0.4270 0.2376 0.4740 0.3795 - - - - - - - - - -
0.4121 3400 0.0458 - - - - - - - - - - - - - - -
0.4364 3600 0.0477 - - - - - - - - - - - - - - -
0.4606 3800 0.0479 - - - - - - - - - - - - - - -
0.4848 4000 0.046 - - - - - - - - - - - - - - -
0.5091 4200 0.0382 - - - - - - - - - - - - - - -
0.5333 4400 0.0442 - - - - - - - - - - - - - - -
0.5576 4600 0.0405 - - - - - - - - - - - - - - -
0.5818 4800 0.0417 - - - - - - - - - - - - - - -
0.6 4950 - 0.0416 0.4677 0.2401 0.4760 0.3946 - - - - - - - - - -
0.6061 5000 0.033 - - - - - - - - - - - - - - -
0.6303 5200 0.0437 - - - - - - - - - - - - - - -
0.6545 5400 0.0351 - - - - - - - - - - - - - - -
0.6788 5600 0.0387 - - - - - - - - - - - - - - -
0.7030 5800 0.048 - - - - - - - - - - - - - - -
0.7273 6000 0.0498 - - - - - - - - - - - - - - -
0.7515 6200 0.0442 - - - - - - - - - - - - - - -
0.7758 6400 0.0359 - - - - - - - - - - - - - - -
0.8 6600 0.0398 0.0403 0.4633 0.2763 0.4797 0.4064 - - - - - - - - - -
0.8242 6800 0.0364 - - - - - - - - - - - - - - -
0.8485 7000 0.0363 - - - - - - - - - - - - - - -
0.8727 7200 0.0344 - - - - - - - - - - - - - - -
0.8970 7400 0.0351 - - - - - - - - - - - - - - -
0.9212 7600 0.0296 - - - - - - - - - - - - - - -
0.9455 7800 0.0363 - - - - - - - - - - - - - - -
0.9697 8000 0.0387 - - - - - - - - - - - - - - -
0.9939 8200 0.041 - - - - - - - - - - - - - - -
1.0 8250 - 0.0413 0.4653 0.2583 0.4681 0.3972 - - - - - - - - - -
-1 -1 - - 0.4633 0.2763 0.4797 0.4631 0.2161 0.4933 0.7519 0.2932 0.6047 0.7882 0.2935 0.4216 0.5022 0.4366
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.084 kWh
  • Carbon Emitted: 0.033 kg of CO2
  • Hours Used: 0.292 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }