splade-distilbert-base-uncased trained on Quora Duplicates Questions

This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the quora-duplicates dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: distilbert/distilbert-base-uncased
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-quora-duplicates")
# Run inference
sentences = [
    'What accomplishments did Hillary Clinton achieve during her time as Secretary of State?',
    "What are Hillary Clinton's most recognized accomplishments while Secretary of State?",
    'What are Hillary Clinton’s qualifications to be President?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 83.9635,  60.9402,  26.0887],
#         [ 60.9402,  85.6474,  33.3293],
#         [ 26.0887,  33.3293, 104.0980]])

Evaluation

Metrics

Sparse Binary Classification

Metric Value
cosine_accuracy 0.759
cosine_accuracy_threshold 0.8013
cosine_f1 0.6742
cosine_f1_threshold 0.5425
cosine_precision 0.5282
cosine_recall 0.9317
cosine_ap 0.6876
cosine_mcc 0.506
dot_accuracy 0.754
dot_accuracy_threshold 47.2765
dot_f1 0.676
dot_f1_threshold 40.9553
dot_precision 0.5399
dot_recall 0.9037
dot_ap 0.6071
dot_mcc 0.5042
euclidean_accuracy 0.677
euclidean_accuracy_threshold -14.2952
euclidean_f1 0.486
euclidean_f1_threshold -0.5385
euclidean_precision 0.3213
euclidean_recall 0.9969
euclidean_ap 0.2043
euclidean_mcc -0.0459
manhattan_accuracy 0.677
manhattan_accuracy_threshold -163.6865
manhattan_f1 0.486
manhattan_f1_threshold -2.7509
manhattan_precision 0.3213
manhattan_recall 0.9969
manhattan_ap 0.2056
manhattan_mcc -0.0459
max_accuracy 0.759
max_accuracy_threshold 47.2765
max_f1 0.676
max_f1_threshold 40.9553
max_precision 0.5399
max_recall 0.9969
max_ap 0.6876
max_mcc 0.506
active_dims 83.3634
sparsity_ratio 0.9973

Sparse Information Retrieval

  • Datasets: NanoMSMARCO, NanoNQ, NanoNFCorpus, NanoQuoraRetrieval, NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoMSMARCO NanoNQ NanoNFCorpus NanoQuoraRetrieval NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.24 0.18 0.3 0.9 0.14 0.56 0.64 0.2 0.8 0.34 0.08 0.44 0.4082
dot_accuracy@3 0.44 0.46 0.42 0.96 0.32 0.78 0.72 0.28 0.9 0.56 0.32 0.58 0.7551
dot_accuracy@5 0.6 0.5 0.48 1.0 0.42 0.82 0.82 0.4 0.92 0.66 0.38 0.7 0.8776
dot_accuracy@10 0.74 0.64 0.52 1.0 0.52 0.88 0.88 0.46 0.94 0.78 0.44 0.78 0.9592
dot_precision@1 0.24 0.18 0.3 0.9 0.14 0.56 0.64 0.2 0.8 0.34 0.08 0.44 0.4082
dot_precision@3 0.1467 0.1533 0.2467 0.3867 0.1133 0.5133 0.2533 0.1267 0.3933 0.26 0.1067 0.2 0.4354
dot_precision@5 0.12 0.1 0.216 0.256 0.092 0.488 0.176 0.104 0.264 0.2 0.076 0.148 0.3837
dot_precision@10 0.074 0.066 0.174 0.136 0.064 0.436 0.094 0.07 0.142 0.142 0.044 0.086 0.3327
dot_recall@1 0.24 0.17 0.0201 0.804 0.0717 0.0423 0.6067 0.0947 0.4 0.0717 0.08 0.415 0.0271
dot_recall@3 0.44 0.43 0.0352 0.9087 0.1483 0.118 0.7033 0.1508 0.59 0.1607 0.32 0.55 0.0847
dot_recall@5 0.6 0.46 0.0744 0.97 0.19 0.1751 0.8033 0.2536 0.66 0.2057 0.38 0.665 0.1209
dot_recall@10 0.74 0.61 0.0892 0.99 0.25 0.2739 0.8633 0.3212 0.71 0.2917 0.44 0.76 0.2134
dot_ndcg@10 0.4666 0.3928 0.2175 0.9434 0.1928 0.5024 0.7369 0.2333 0.6849 0.285 0.2651 0.5848 0.3661
dot_mrr@10 0.3822 0.3355 0.3754 0.94 0.2527 0.6802 0.7064 0.2714 0.8542 0.4741 0.2085 0.54 0.5941
dot_map@100 0.3914 0.3266 0.0833 0.921 0.1415 0.3822 0.6976 0.1839 0.6061 0.2007 0.2135 0.5247 0.2483
query_active_dims 94.9 85.72 101.92 87.4 102.34 79.8 104.22 89.74 111.24 113.78 202.02 102.48 97.3061
query_sparsity_ratio 0.9969 0.9972 0.9967 0.9971 0.9966 0.9974 0.9966 0.9971 0.9964 0.9963 0.9934 0.9966 0.9968
corpus_active_dims 115.977 156.1067 217.0911 90.3262 217.8072 146.6807 228.7436 131.3409 166.1906 226.2181 176.6116 216.6451 147.0164
corpus_sparsity_ratio 0.9962 0.9949 0.9929 0.997 0.9929 0.9952 0.9925 0.9957 0.9946 0.9926 0.9942 0.9929 0.9952

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nq",
            "nfcorpus",
            "quoraretrieval"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4
dot_accuracy@3 0.565
dot_accuracy@5 0.625
dot_accuracy@10 0.71
dot_precision@1 0.4
dot_precision@3 0.23
dot_precision@5 0.166
dot_precision@10 0.1075
dot_recall@1 0.306
dot_recall@3 0.4471
dot_recall@5 0.504
dot_recall@10 0.5844
dot_ndcg@10 0.4927
dot_mrr@10 0.5017
dot_map@100 0.4251
query_active_dims 83.545
query_sparsity_ratio 0.9973
corpus_active_dims 123.2832
corpus_sparsity_ratio 0.996

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4022
dot_accuracy@3 0.5765
dot_accuracy@5 0.6598
dot_accuracy@10 0.7338
dot_precision@1 0.4022
dot_precision@3 0.2566
dot_precision@5 0.2018
dot_precision@10 0.1431
dot_recall@1 0.2341
dot_recall@3 0.3569
dot_recall@5 0.4275
dot_recall@10 0.5041
dot_ndcg@10 0.4517
dot_mrr@10 0.5088
dot_map@100 0.3785
query_active_dims 105.6179
query_sparsity_ratio 0.9965
corpus_active_dims 163.7364
corpus_sparsity_ratio 0.9946

Training Details

Training Dataset

quora-duplicates

  • Dataset: quora-duplicates at 451a485
  • Size: 99,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 14.1 tokens
    • max: 39 tokens
    • min: 6 tokens
    • mean: 13.83 tokens
    • max: 41 tokens
    • min: 6 tokens
    • mean: 15.21 tokens
    • max: 75 tokens
  • Samples:
    anchor positive negative
    What are the best GMAT coaching institutes in Delhi NCR? Which are the best GMAT coaching institutes in Delhi/NCR? What are the best GMAT coaching institutes in Delhi-Noida Area?
    Is a third world war coming? Is World War 3 more imminent than expected? Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?
    Should I build iOS or Android apps first? Should people choose Android or iOS first to build their App? How much more effort is it to build your app on both iOS and Android?
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 3e-05,
        "lambda_query": 5e-05
    }
    

Evaluation Dataset

quora-duplicates

  • Dataset: quora-duplicates at 451a485
  • Size: 1,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 14.05 tokens
    • max: 40 tokens
    • min: 6 tokens
    • mean: 14.14 tokens
    • max: 44 tokens
    • min: 6 tokens
    • mean: 14.56 tokens
    • max: 60 tokens
  • Samples:
    anchor positive negative
    What happens if we use petrol in diesel vehicles? Why can't we use petrol in diesel? Why are diesel engines noisier than petrol engines?
    Why is Saltwater taffy candy imported in Switzerland? Why is Saltwater taffy candy imported in Laos? Is salt a consumer product?
    Which is your favourite film in 2016? What movie is the best movie of 2016? What will the best movie of 2017 be?
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 3e-05,
        "lambda_query": 5e-05
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss quora_duplicates_dev_max_ap NanoMSMARCO_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10
0.0242 200 6.2275 - - - - - - - - - - - - - - - -
0.0485 400 0.4129 - - - - - - - - - - - - - - - -
0.0727 600 0.3238 - - - - - - - - - - - - - - - -
0.0970 800 0.2795 - - - - - - - - - - - - - - - -
0.1212 1000 0.255 - - - - - - - - - - - - - - - -
0.1455 1200 0.2367 - - - - - - - - - - - - - - - -
0.1697 1400 0.25 - - - - - - - - - - - - - - - -
0.1939 1600 0.2742 - - - - - - - - - - - - - - - -
0.2 1650 - 0.1914 0.6442 0.3107 0.2820 0.1991 0.8711 0.4157 - - - - - - - - -
0.2182 1800 0.2102 - - - - - - - - - - - - - - - -
0.2424 2000 0.1797 - - - - - - - - - - - - - - - -
0.2667 2200 0.2021 - - - - - - - - - - - - - - - -
0.2909 2400 0.1734 - - - - - - - - - - - - - - - -
0.3152 2600 0.1849 - - - - - - - - - - - - - - - -
0.3394 2800 0.1871 - - - - - - - - - - - - - - - -
0.3636 3000 0.1685 - - - - - - - - - - - - - - - -
0.3879 3200 0.1512 - - - - - - - - - - - - - - - -
0.4 3300 - 0.1139 0.6637 0.4200 0.3431 0.1864 0.9222 0.4679 - - - - - - - - -
0.4121 3400 0.1165 - - - - - - - - - - - - - - - -
0.4364 3600 0.1518 - - - - - - - - - - - - - - - -
0.4606 3800 0.1328 - - - - - - - - - - - - - - - -
0.4848 4000 0.1098 - - - - - - - - - - - - - - - -
0.5091 4200 0.1389 - - - - - - - - - - - - - - - -
0.5333 4400 0.1224 - - - - - - - - - - - - - - - -
0.5576 4600 0.09 - - - - - - - - - - - - - - - -
0.5818 4800 0.1162 - - - - - - - - - - - - - - - -
0.6 4950 - 0.0784 0.6666 0.4404 0.3688 0.2239 0.9478 0.4952 - - - - - - - - -
0.6061 5000 0.1054 - - - - - - - - - - - - - - - -
0.6303 5200 0.0949 - - - - - - - - - - - - - - - -
0.6545 5400 0.1315 - - - - - - - - - - - - - - - -
0.6788 5600 0.1246 - - - - - - - - - - - - - - - -
0.7030 5800 0.1047 - - - - - - - - - - - - - - - -
0.7273 6000 0.0861 - - - - - - - - - - - - - - - -
0.7515 6200 0.103 - - - - - - - - - - - - - - - -
0.7758 6400 0.1062 - - - - - - - - - - - - - - - -
0.8 6600 0.1275 0.0783 0.6856 0.4666 0.3928 0.2175 0.9434 0.5051 - - - - - - - - -
0.8242 6800 0.1131 - - - - - - - - - - - - - - - -
0.8485 7000 0.0651 - - - - - - - - - - - - - - - -
0.8727 7200 0.0657 - - - - - - - - - - - - - - - -
0.8970 7400 0.1065 - - - - - - - - - - - - - - - -
0.9212 7600 0.0691 - - - - - - - - - - - - - - - -
0.9455 7800 0.1136 - - - - - - - - - - - - - - - -
0.9697 8000 0.0834 - - - - - - - - - - - - - - - -
0.9939 8200 0.0867 - - - - - - - - - - - - - - - -
1.0 8250 - 0.0720 0.6876 0.4688 0.3711 0.1901 0.9408 0.4927 - - - - - - - - -
-1 -1 - - - 0.4666 0.3928 0.2175 0.9434 0.4517 0.1928 0.5024 0.7369 0.2333 0.6849 0.2850 0.2651 0.5848 0.3661
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.075 kWh
  • Carbon Emitted: 0.029 kg of CO2
  • Hours Used: 0.306 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }
Downloads last month
5
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tomaarsen/splade-distilbert-base-uncased-quora-duplicates

Finetuned
(8846)
this model

Dataset used to train tomaarsen/splade-distilbert-base-uncased-quora-duplicates

Evaluation results