metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: How do I know if a girl likes me at school?
- text: What are some five star hotel in Jaipur?
- text: Is it normal to fantasize your wife having sex with another man?
- text: >-
What is the Sahara, and how do the average temperatures there compare to
the ones in the Simpson Desert?
- text: >-
What are Hillary Clinton's most recognized accomplishments while Secretary
of State?
datasets:
- sentence-transformers/quora-duplicates
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- dot_mcc
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- euclidean_mcc
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- manhattan_mcc
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- max_mcc
- active_dims
- sparsity_ratio
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 29.19330199735101
energy_consumed: 0.07510458396754072
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.306
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: splade-distilbert-base-uncased trained on Quora Duplicates Questions
results:
- task:
type: sparse-binary-classification
name: Sparse Binary Classification
dataset:
name: quora duplicates dev
type: quora_duplicates_dev
metrics:
- type: cosine_accuracy
value: 0.759
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8012633323669434
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6741573033707865
name: Cosine F1
- type: cosine_f1_threshold
value: 0.542455792427063
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.528169014084507
name: Cosine Precision
- type: cosine_recall
value: 0.9316770186335404
name: Cosine Recall
- type: cosine_ap
value: 0.6875984052094628
name: Cosine Ap
- type: cosine_mcc
value: 0.5059561809366392
name: Cosine Mcc
- type: dot_accuracy
value: 0.754
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 47.276466369628906
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6759581881533101
name: Dot F1
- type: dot_f1_threshold
value: 40.955284118652344
name: Dot F1 Threshold
- type: dot_precision
value: 0.5398886827458256
name: Dot Precision
- type: dot_recall
value: 0.9037267080745341
name: Dot Recall
- type: dot_ap
value: 0.6070585464263578
name: Dot Ap
- type: dot_mcc
value: 0.5042382773971489
name: Dot Mcc
- type: euclidean_accuracy
value: 0.677
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: -14.295218467712402
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.48599545798637395
name: Euclidean F1
- type: euclidean_f1_threshold
value: -0.5385364294052124
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.3213213213213213
name: Euclidean Precision
- type: euclidean_recall
value: 0.9968944099378882
name: Euclidean Recall
- type: euclidean_ap
value: 0.20430811061248494
name: Euclidean Ap
- type: euclidean_mcc
value: -0.04590966956831287
name: Euclidean Mcc
- type: manhattan_accuracy
value: 0.677
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: -163.6865234375
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.48599545798637395
name: Manhattan F1
- type: manhattan_f1_threshold
value: -2.7509355545043945
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.3213213213213213
name: Manhattan Precision
- type: manhattan_recall
value: 0.9968944099378882
name: Manhattan Recall
- type: manhattan_ap
value: 0.20563864564607998
name: Manhattan Ap
- type: manhattan_mcc
value: -0.04590966956831287
name: Manhattan Mcc
- type: max_accuracy
value: 0.759
name: Max Accuracy
- type: max_accuracy_threshold
value: 47.276466369628906
name: Max Accuracy Threshold
- type: max_f1
value: 0.6759581881533101
name: Max F1
- type: max_f1_threshold
value: 40.955284118652344
name: Max F1 Threshold
- type: max_precision
value: 0.5398886827458256
name: Max Precision
- type: max_recall
value: 0.9968944099378882
name: Max Recall
- type: max_ap
value: 0.6875984052094628
name: Max Ap
- type: max_mcc
value: 0.5059561809366392
name: Max Mcc
- type: active_dims
value: 83.36341094970703
name: Active Dims
- type: sparsity_ratio
value: 0.9972687434981421
name: Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.24
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.44
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.24
name: Dot Precision@1
- type: dot_precision@3
value: 0.14666666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.11200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.07400000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.24
name: Dot Recall@1
- type: dot_recall@3
value: 0.44
name: Dot Recall@3
- type: dot_recall@5
value: 0.56
name: Dot Recall@5
- type: dot_recall@10
value: 0.74
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.46883808093835555
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3849920634920634
name: Dot Mrr@10
- type: dot_map@100
value: 0.39450094910993877
name: Dot Map@100
- type: query_active_dims
value: 84.87999725341797
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9972190551977781
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 104.35554504394531
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9965809729033503
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.24
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.44
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.24
name: Dot Precision@1
- type: dot_precision@3
value: 0.14666666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.12000000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.07400000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.24
name: Dot Recall@1
- type: dot_recall@3
value: 0.44
name: Dot Recall@3
- type: dot_recall@5
value: 0.6
name: Dot Recall@5
- type: dot_recall@10
value: 0.74
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.46663046446554135
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3821587301587301
name: Dot Mrr@10
- type: dot_map@100
value: 0.39141822290426725
name: Dot Map@100
- type: query_active_dims
value: 94.9000015258789
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9968907672653863
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 115.97699737548828
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9962002163234556
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.18
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.44
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.52
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.58
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.18
name: Dot Precision@1
- type: dot_precision@3
value: 0.14666666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.10400000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.06000000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.17
name: Dot Recall@1
- type: dot_recall@3
value: 0.41
name: Dot Recall@3
- type: dot_recall@5
value: 0.48
name: Dot Recall@5
- type: dot_recall@10
value: 0.55
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3711173352982992
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.32435714285714284
name: Dot Mrr@10
- type: dot_map@100
value: 0.32104591506684527
name: Dot Map@100
- type: query_active_dims
value: 76.81999969482422
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9974831269348396
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 139.53028869628906
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9954285338871539
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.18
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.46
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.5
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.64
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.18
name: Dot Precision@1
- type: dot_precision@3
value: 0.1533333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.10000000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.066
name: Dot Precision@10
- type: dot_recall@1
value: 0.17
name: Dot Recall@1
- type: dot_recall@3
value: 0.43
name: Dot Recall@3
- type: dot_recall@5
value: 0.46
name: Dot Recall@5
- type: dot_recall@10
value: 0.61
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.39277722565932277
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.33549999999999996
name: Dot Mrr@10
- type: dot_map@100
value: 0.3266050492721919
name: Dot Map@100
- type: query_active_dims
value: 85.72000122070312
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9971915339354989
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 156.10665893554688
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.994885438079564
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.42
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.46
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.52
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.24
name: Dot Precision@3
- type: dot_precision@5
value: 0.2
name: Dot Precision@5
- type: dot_precision@10
value: 0.16
name: Dot Precision@10
- type: dot_recall@1
value: 0.010055870806195594
name: Dot Recall@1
- type: dot_recall@3
value: 0.03299225609257712
name: Dot Recall@3
- type: dot_recall@5
value: 0.043240249260663235
name: Dot Recall@5
- type: dot_recall@10
value: 0.0575687615260951
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.1901013298743406
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3606904761904762
name: Dot Mrr@10
- type: dot_map@100
value: 0.06747201795263198
name: Dot Map@100
- type: query_active_dims
value: 92.18000030517578
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9969798833528217
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 196.1699981689453
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.993572832770823
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.42
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.48
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.52
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.24666666666666665
name: Dot Precision@3
- type: dot_precision@5
value: 0.21600000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.174
name: Dot Precision@10
- type: dot_recall@1
value: 0.020055870806195596
name: Dot Recall@1
- type: dot_recall@3
value: 0.03516880470242261
name: Dot Recall@3
- type: dot_recall@5
value: 0.07436160102717629
name: Dot Recall@5
- type: dot_recall@10
value: 0.08924749441772001
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2174721143005973
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3753888888888888
name: Dot Mrr@10
- type: dot_map@100
value: 0.08327101018955965
name: Dot Map@100
- type: query_active_dims
value: 101.91999816894531
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9966607693411655
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 217.09109497070312
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9928873895887982
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.9
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.96
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9
name: Dot Precision@1
- type: dot_precision@3
value: 0.38666666666666655
name: Dot Precision@3
- type: dot_precision@5
value: 0.24799999999999997
name: Dot Precision@5
- type: dot_precision@10
value: 0.13599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.804
name: Dot Recall@1
- type: dot_recall@3
value: 0.9053333333333333
name: Dot Recall@3
- type: dot_recall@5
value: 0.9326666666666666
name: Dot Recall@5
- type: dot_recall@10
value: 0.99
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.940813094731721
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9366666666666665
name: Dot Mrr@10
- type: dot_map@100
value: 0.9174399766899767
name: Dot Map@100
- type: query_active_dims
value: 80.30000305175781
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9973691107053353
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 83.33353424072266
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9972697223563096
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.9
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.96
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9
name: Dot Precision@1
- type: dot_precision@3
value: 0.38666666666666655
name: Dot Precision@3
- type: dot_precision@5
value: 0.25599999999999995
name: Dot Precision@5
- type: dot_precision@10
value: 0.13599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.804
name: Dot Recall@1
- type: dot_recall@3
value: 0.9086666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.97
name: Dot Recall@5
- type: dot_recall@10
value: 0.99
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9434418368741703
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.94
name: Dot Mrr@10
- type: dot_map@100
value: 0.9210437710437711
name: Dot Map@100
- type: query_active_dims
value: 87.4000015258789
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9971364916609043
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 90.32620239257812
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.997040619802353
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.4
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.565
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.625
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.71
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4
name: Dot Precision@1
- type: dot_precision@3
value: 0.22999999999999998
name: Dot Precision@3
- type: dot_precision@5
value: 0.166
name: Dot Precision@5
- type: dot_precision@10
value: 0.10750000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.30601396770154893
name: Dot Recall@1
- type: dot_recall@3
value: 0.4470813973564776
name: Dot Recall@3
- type: dot_recall@5
value: 0.5039767289818324
name: Dot Recall@5
- type: dot_recall@10
value: 0.5843921903815238
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4927174602106791
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5016765873015872
name: Dot Mrr@10
- type: dot_map@100
value: 0.4251147147048482
name: Dot Map@100
- type: query_active_dims
value: 83.54500007629395
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9972627940476937
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 123.28323480743562
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9959608402199255
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.4021664050235479
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5765463108320251
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6598116169544741
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7337833594976453
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4021664050235479
name: Dot Precision@1
- type: dot_precision@3
value: 0.25656724228152794
name: Dot Precision@3
- type: dot_precision@5
value: 0.20182103610675042
name: Dot Precision@5
- type: dot_precision@10
value: 0.14312715855572997
name: Dot Precision@10
- type: dot_recall@1
value: 0.23408727816164185
name: Dot Recall@1
- type: dot_recall@3
value: 0.3568914414902249
name: Dot Recall@3
- type: dot_recall@5
value: 0.4275402562349963
name: Dot Recall@5
- type: dot_recall@10
value: 0.5040607961406979
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.45167521970189345
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5088102589020956
name: Dot Mrr@10
- type: dot_map@100
value: 0.37853024172675503
name: Dot Map@100
- type: query_active_dims
value: 105.61787400444042
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9965396149005816
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 163.73635361872905
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9946354644643625
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.14
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.32
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.42
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.52
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.14
name: Dot Precision@1
- type: dot_precision@3
value: 0.11333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.09200000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.064
name: Dot Precision@10
- type: dot_recall@1
value: 0.07166666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.14833333333333332
name: Dot Recall@3
- type: dot_recall@5
value: 0.19
name: Dot Recall@5
- type: dot_recall@10
value: 0.25
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.1928494772790168
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.2526666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.14153388517603807
name: Dot Map@100
- type: query_active_dims
value: 102.33999633789062
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9966470088350079
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 217.80722045898438
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9928639269884351
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.56
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.78
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.82
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.88
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.56
name: Dot Precision@1
- type: dot_precision@3
value: 0.5133333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.488
name: Dot Precision@5
- type: dot_precision@10
value: 0.436
name: Dot Precision@10
- type: dot_recall@1
value: 0.042268334576683116
name: Dot Recall@1
- type: dot_recall@3
value: 0.1179684188048045
name: Dot Recall@3
- type: dot_recall@5
value: 0.17514937366700764
name: Dot Recall@5
- type: dot_recall@10
value: 0.2739338942789917
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5024388532207343
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6801666666666667
name: Dot Mrr@10
- type: dot_map@100
value: 0.38220472918007364
name: Dot Map@100
- type: query_active_dims
value: 79.80000305175781
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9973854923317031
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 146.68072509765625
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.995194262332165
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.64
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.72
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.82
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.88
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.64
name: Dot Precision@1
- type: dot_precision@3
value: 0.2533333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.176
name: Dot Precision@5
- type: dot_precision@10
value: 0.09399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.6066666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.7033333333333333
name: Dot Recall@3
- type: dot_recall@5
value: 0.8033333333333332
name: Dot Recall@5
- type: dot_recall@10
value: 0.8633333333333333
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7368677901493659
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7063809523809523
name: Dot Mrr@10
- type: dot_map@100
value: 0.697561348294107
name: Dot Map@100
- type: query_active_dims
value: 104.22000122070312
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9965854137598879
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 228.74359130859375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9925056159062776
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.2
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.28
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.46
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.2
name: Dot Precision@1
- type: dot_precision@3
value: 0.12666666666666665
name: Dot Precision@3
- type: dot_precision@5
value: 0.10400000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.07
name: Dot Precision@10
- type: dot_recall@1
value: 0.09469047619047619
name: Dot Recall@1
- type: dot_recall@3
value: 0.15076984126984128
name: Dot Recall@3
- type: dot_recall@5
value: 0.25362698412698415
name: Dot Recall@5
- type: dot_recall@10
value: 0.3211825396825397
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.23331922670891586
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.27135714285714285
name: Dot Mrr@10
- type: dot_map@100
value: 0.18392178053045694
name: Dot Map@100
- type: query_active_dims
value: 89.73999786376953
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9970598257694853
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 131.34085083007812
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9956968465097282
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.8
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.92
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.94
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.8
name: Dot Precision@1
- type: dot_precision@3
value: 0.3933333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.264
name: Dot Precision@5
- type: dot_precision@10
value: 0.14200000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.4
name: Dot Recall@1
- type: dot_recall@3
value: 0.59
name: Dot Recall@3
- type: dot_recall@5
value: 0.66
name: Dot Recall@5
- type: dot_recall@10
value: 0.71
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6848748058213975
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8541666666666665
name: Dot Mrr@10
- type: dot_map@100
value: 0.6060670580971632
name: Dot Map@100
- type: query_active_dims
value: 111.23999786376953
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9963554158356671
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 166.19056701660156
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9945550564505407
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.34
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.66
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.34
name: Dot Precision@1
- type: dot_precision@3
value: 0.26
name: Dot Precision@3
- type: dot_precision@5
value: 0.2
name: Dot Precision@5
- type: dot_precision@10
value: 0.14200000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.07166666666666668
name: Dot Recall@1
- type: dot_recall@3
value: 0.16066666666666665
name: Dot Recall@3
- type: dot_recall@5
value: 0.20566666666666664
name: Dot Recall@5
- type: dot_recall@10
value: 0.2916666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2850130343263586
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.47407142857142853
name: Dot Mrr@10
- type: dot_map@100
value: 0.20070977606957205
name: Dot Map@100
- type: query_active_dims
value: 113.77999877929688
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9962721971437226
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 226.21810913085938
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9925883589171464
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.08
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.32
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.38
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.44
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.08
name: Dot Precision@1
- type: dot_precision@3
value: 0.10666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.07600000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.044000000000000004
name: Dot Precision@10
- type: dot_recall@1
value: 0.08
name: Dot Recall@1
- type: dot_recall@3
value: 0.32
name: Dot Recall@3
- type: dot_recall@5
value: 0.38
name: Dot Recall@5
- type: dot_recall@10
value: 0.44
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.26512761684329256
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.20850000000000002
name: Dot Mrr@10
- type: dot_map@100
value: 0.2135415485154769
name: Dot Map@100
- type: query_active_dims
value: 202.02000427246094
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9933811675423477
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 176.61155700683594
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.994213630921734
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.58
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.19999999999999996
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.415
name: Dot Recall@1
- type: dot_recall@3
value: 0.55
name: Dot Recall@3
- type: dot_recall@5
value: 0.665
name: Dot Recall@5
- type: dot_recall@10
value: 0.76
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5848481832222858
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5400476190476191
name: Dot Mrr@10
- type: dot_map@100
value: 0.5247408283859897
name: Dot Map@100
- type: query_active_dims
value: 102.4800033569336
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9966424217496581
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 216.64508056640625
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9929020024714499
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.40816326530612246
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7551020408163265
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8775510204081632
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9591836734693877
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.40816326530612246
name: Dot Precision@1
- type: dot_precision@3
value: 0.43537414965986393
name: Dot Precision@3
- type: dot_precision@5
value: 0.38367346938775504
name: Dot Precision@5
- type: dot_precision@10
value: 0.3326530612244898
name: Dot Precision@10
- type: dot_recall@1
value: 0.027119934527989286
name: Dot Recall@1
- type: dot_recall@3
value: 0.08468167459585536
name: Dot Recall@3
- type: dot_recall@5
value: 0.12088537223378343
name: Dot Recall@5
- type: dot_recall@10
value: 0.21342642144981977
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.36611722725361623
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5941286038224813
name: Dot Mrr@10
- type: dot_map@100
value: 0.24827413478914825
name: Dot Map@100
- type: query_active_dims
value: 97.30612182617188
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9968119349378752
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 147.016357421875
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9951832659255005
name: Corpus Sparsity Ratio
splade-distilbert-base-uncased trained on Quora Duplicates Questions
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the quora-duplicates dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-quora-duplicates")
# Run inference
sentences = [
'What accomplishments did Hillary Clinton achieve during her time as Secretary of State?',
"What are Hillary Clinton's most recognized accomplishments while Secretary of State?",
'What are Hillary Clinton’s qualifications to be President?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 83.9635, 60.9402, 26.0887],
# [ 60.9402, 85.6474, 33.3293],
# [ 26.0887, 33.3293, 104.0980]])
Evaluation
Metrics
Sparse Binary Classification
- Dataset:
quora_duplicates_dev
- Evaluated with
SparseBinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.759 |
cosine_accuracy_threshold | 0.8013 |
cosine_f1 | 0.6742 |
cosine_f1_threshold | 0.5425 |
cosine_precision | 0.5282 |
cosine_recall | 0.9317 |
cosine_ap | 0.6876 |
cosine_mcc | 0.506 |
dot_accuracy | 0.754 |
dot_accuracy_threshold | 47.2765 |
dot_f1 | 0.676 |
dot_f1_threshold | 40.9553 |
dot_precision | 0.5399 |
dot_recall | 0.9037 |
dot_ap | 0.6071 |
dot_mcc | 0.5042 |
euclidean_accuracy | 0.677 |
euclidean_accuracy_threshold | -14.2952 |
euclidean_f1 | 0.486 |
euclidean_f1_threshold | -0.5385 |
euclidean_precision | 0.3213 |
euclidean_recall | 0.9969 |
euclidean_ap | 0.2043 |
euclidean_mcc | -0.0459 |
manhattan_accuracy | 0.677 |
manhattan_accuracy_threshold | -163.6865 |
manhattan_f1 | 0.486 |
manhattan_f1_threshold | -2.7509 |
manhattan_precision | 0.3213 |
manhattan_recall | 0.9969 |
manhattan_ap | 0.2056 |
manhattan_mcc | -0.0459 |
max_accuracy | 0.759 |
max_accuracy_threshold | 47.2765 |
max_f1 | 0.676 |
max_f1_threshold | 40.9553 |
max_precision | 0.5399 |
max_recall | 0.9969 |
max_ap | 0.6876 |
max_mcc | 0.506 |
active_dims | 83.3634 |
sparsity_ratio | 0.9973 |
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNQ
,NanoNFCorpus
,NanoQuoraRetrieval
,NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNQ | NanoNFCorpus | NanoQuoraRetrieval | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.24 | 0.18 | 0.3 | 0.9 | 0.14 | 0.56 | 0.64 | 0.2 | 0.8 | 0.34 | 0.08 | 0.44 | 0.4082 |
dot_accuracy@3 | 0.44 | 0.46 | 0.42 | 0.96 | 0.32 | 0.78 | 0.72 | 0.28 | 0.9 | 0.56 | 0.32 | 0.58 | 0.7551 |
dot_accuracy@5 | 0.6 | 0.5 | 0.48 | 1.0 | 0.42 | 0.82 | 0.82 | 0.4 | 0.92 | 0.66 | 0.38 | 0.7 | 0.8776 |
dot_accuracy@10 | 0.74 | 0.64 | 0.52 | 1.0 | 0.52 | 0.88 | 0.88 | 0.46 | 0.94 | 0.78 | 0.44 | 0.78 | 0.9592 |
dot_precision@1 | 0.24 | 0.18 | 0.3 | 0.9 | 0.14 | 0.56 | 0.64 | 0.2 | 0.8 | 0.34 | 0.08 | 0.44 | 0.4082 |
dot_precision@3 | 0.1467 | 0.1533 | 0.2467 | 0.3867 | 0.1133 | 0.5133 | 0.2533 | 0.1267 | 0.3933 | 0.26 | 0.1067 | 0.2 | 0.4354 |
dot_precision@5 | 0.12 | 0.1 | 0.216 | 0.256 | 0.092 | 0.488 | 0.176 | 0.104 | 0.264 | 0.2 | 0.076 | 0.148 | 0.3837 |
dot_precision@10 | 0.074 | 0.066 | 0.174 | 0.136 | 0.064 | 0.436 | 0.094 | 0.07 | 0.142 | 0.142 | 0.044 | 0.086 | 0.3327 |
dot_recall@1 | 0.24 | 0.17 | 0.0201 | 0.804 | 0.0717 | 0.0423 | 0.6067 | 0.0947 | 0.4 | 0.0717 | 0.08 | 0.415 | 0.0271 |
dot_recall@3 | 0.44 | 0.43 | 0.0352 | 0.9087 | 0.1483 | 0.118 | 0.7033 | 0.1508 | 0.59 | 0.1607 | 0.32 | 0.55 | 0.0847 |
dot_recall@5 | 0.6 | 0.46 | 0.0744 | 0.97 | 0.19 | 0.1751 | 0.8033 | 0.2536 | 0.66 | 0.2057 | 0.38 | 0.665 | 0.1209 |
dot_recall@10 | 0.74 | 0.61 | 0.0892 | 0.99 | 0.25 | 0.2739 | 0.8633 | 0.3212 | 0.71 | 0.2917 | 0.44 | 0.76 | 0.2134 |
dot_ndcg@10 | 0.4666 | 0.3928 | 0.2175 | 0.9434 | 0.1928 | 0.5024 | 0.7369 | 0.2333 | 0.6849 | 0.285 | 0.2651 | 0.5848 | 0.3661 |
dot_mrr@10 | 0.3822 | 0.3355 | 0.3754 | 0.94 | 0.2527 | 0.6802 | 0.7064 | 0.2714 | 0.8542 | 0.4741 | 0.2085 | 0.54 | 0.5941 |
dot_map@100 | 0.3914 | 0.3266 | 0.0833 | 0.921 | 0.1415 | 0.3822 | 0.6976 | 0.1839 | 0.6061 | 0.2007 | 0.2135 | 0.5247 | 0.2483 |
query_active_dims | 94.9 | 85.72 | 101.92 | 87.4 | 102.34 | 79.8 | 104.22 | 89.74 | 111.24 | 113.78 | 202.02 | 102.48 | 97.3061 |
query_sparsity_ratio | 0.9969 | 0.9972 | 0.9967 | 0.9971 | 0.9966 | 0.9974 | 0.9966 | 0.9971 | 0.9964 | 0.9963 | 0.9934 | 0.9966 | 0.9968 |
corpus_active_dims | 115.977 | 156.1067 | 217.0911 | 90.3262 | 217.8072 | 146.6807 | 228.7436 | 131.3409 | 166.1906 | 226.2181 | 176.6116 | 216.6451 | 147.0164 |
corpus_sparsity_ratio | 0.9962 | 0.9949 | 0.9929 | 0.997 | 0.9929 | 0.9952 | 0.9925 | 0.9957 | 0.9946 | 0.9926 | 0.9942 | 0.9929 | 0.9952 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nq", "nfcorpus", "quoraretrieval" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4 |
dot_accuracy@3 | 0.565 |
dot_accuracy@5 | 0.625 |
dot_accuracy@10 | 0.71 |
dot_precision@1 | 0.4 |
dot_precision@3 | 0.23 |
dot_precision@5 | 0.166 |
dot_precision@10 | 0.1075 |
dot_recall@1 | 0.306 |
dot_recall@3 | 0.4471 |
dot_recall@5 | 0.504 |
dot_recall@10 | 0.5844 |
dot_ndcg@10 | 0.4927 |
dot_mrr@10 | 0.5017 |
dot_map@100 | 0.4251 |
query_active_dims | 83.545 |
query_sparsity_ratio | 0.9973 |
corpus_active_dims | 123.2832 |
corpus_sparsity_ratio | 0.996 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4022 |
dot_accuracy@3 | 0.5765 |
dot_accuracy@5 | 0.6598 |
dot_accuracy@10 | 0.7338 |
dot_precision@1 | 0.4022 |
dot_precision@3 | 0.2566 |
dot_precision@5 | 0.2018 |
dot_precision@10 | 0.1431 |
dot_recall@1 | 0.2341 |
dot_recall@3 | 0.3569 |
dot_recall@5 | 0.4275 |
dot_recall@10 | 0.5041 |
dot_ndcg@10 | 0.4517 |
dot_mrr@10 | 0.5088 |
dot_map@100 | 0.3785 |
query_active_dims | 105.6179 |
query_sparsity_ratio | 0.9965 |
corpus_active_dims | 163.7364 |
corpus_sparsity_ratio | 0.9946 |
Training Details
Training Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 99,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.1 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.83 tokens
- max: 41 tokens
- min: 6 tokens
- mean: 15.21 tokens
- max: 75 tokens
- Samples:
anchor positive negative What are the best GMAT coaching institutes in Delhi NCR?
Which are the best GMAT coaching institutes in Delhi/NCR?
What are the best GMAT coaching institutes in Delhi-Noida Area?
Is a third world war coming?
Is World War 3 more imminent than expected?
Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?
Should I build iOS or Android apps first?
Should people choose Android or iOS first to build their App?
How much more effort is it to build your app on both iOS and Android?
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "lambda_corpus": 3e-05, "lambda_query": 5e-05 }
Evaluation Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 1,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.05 tokens
- max: 40 tokens
- min: 6 tokens
- mean: 14.14 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 14.56 tokens
- max: 60 tokens
- Samples:
anchor positive negative What happens if we use petrol in diesel vehicles?
Why can't we use petrol in diesel?
Why are diesel engines noisier than petrol engines?
Why is Saltwater taffy candy imported in Switzerland?
Why is Saltwater taffy candy imported in Laos?
Is salt a consumer product?
Which is your favourite film in 2016?
What movie is the best movie of 2016?
What will the best movie of 2017 be?
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "lambda_corpus": 3e-05, "lambda_query": 5e-05 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12per_device_eval_batch_size
: 12learning_rate
: 2e-05num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 12per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | quora_duplicates_dev_max_ap | NanoMSMARCO_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0242 | 200 | 6.2275 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0485 | 400 | 0.4129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0727 | 600 | 0.3238 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0970 | 800 | 0.2795 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1212 | 1000 | 0.255 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1455 | 1200 | 0.2367 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1697 | 1400 | 0.25 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1939 | 1600 | 0.2742 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2 | 1650 | - | 0.1914 | 0.6442 | 0.3107 | 0.2820 | 0.1991 | 0.8711 | 0.4157 | - | - | - | - | - | - | - | - | - |
0.2182 | 1800 | 0.2102 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2424 | 2000 | 0.1797 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2667 | 2200 | 0.2021 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2909 | 2400 | 0.1734 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3152 | 2600 | 0.1849 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3394 | 2800 | 0.1871 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3636 | 3000 | 0.1685 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3879 | 3200 | 0.1512 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4 | 3300 | - | 0.1139 | 0.6637 | 0.4200 | 0.3431 | 0.1864 | 0.9222 | 0.4679 | - | - | - | - | - | - | - | - | - |
0.4121 | 3400 | 0.1165 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4364 | 3600 | 0.1518 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4606 | 3800 | 0.1328 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4848 | 4000 | 0.1098 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5091 | 4200 | 0.1389 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5333 | 4400 | 0.1224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5576 | 4600 | 0.09 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5818 | 4800 | 0.1162 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6 | 4950 | - | 0.0784 | 0.6666 | 0.4404 | 0.3688 | 0.2239 | 0.9478 | 0.4952 | - | - | - | - | - | - | - | - | - |
0.6061 | 5000 | 0.1054 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6303 | 5200 | 0.0949 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6545 | 5400 | 0.1315 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6788 | 5600 | 0.1246 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7030 | 5800 | 0.1047 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7273 | 6000 | 0.0861 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7515 | 6200 | 0.103 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7758 | 6400 | 0.1062 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8 | 6600 | 0.1275 | 0.0783 | 0.6856 | 0.4666 | 0.3928 | 0.2175 | 0.9434 | 0.5051 | - | - | - | - | - | - | - | - | - |
0.8242 | 6800 | 0.1131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8485 | 7000 | 0.0651 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8727 | 7200 | 0.0657 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8970 | 7400 | 0.1065 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9212 | 7600 | 0.0691 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9455 | 7800 | 0.1136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9697 | 8000 | 0.0834 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9939 | 8200 | 0.0867 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0 | 8250 | - | 0.0720 | 0.6876 | 0.4688 | 0.3711 | 0.1901 | 0.9408 | 0.4927 | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | - | 0.4666 | 0.3928 | 0.2175 | 0.9434 | 0.4517 | 0.1928 | 0.5024 | 0.7369 | 0.2333 | 0.6849 | 0.2850 | 0.2651 | 0.5848 | 0.3661 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.075 kWh
- Carbon Emitted: 0.029 kg of CO2
- Hours Used: 0.306 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}