tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
2f2e257 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - splade
  - generated_from_trainer
  - dataset_size:99000
  - loss:SpladeLoss
  - loss:SparseMultipleNegativesRankingLoss
  - loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
  - text: How do I know if a girl likes me at school?
  - text: What are some five star hotel in Jaipur?
  - text: Is it normal to fantasize your wife having sex with another man?
  - text: >-
      What is the Sahara, and how do the average temperatures there compare to
      the ones in the Simpson Desert?
  - text: >-
      What are Hillary Clinton's most recognized accomplishments while Secretary
      of State?
datasets:
  - sentence-transformers/quora-duplicates
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - cosine_mcc
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - dot_mcc
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - euclidean_mcc
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - manhattan_mcc
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
  - max_mcc
  - active_dims
  - sparsity_ratio
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 29.19330199735101
  energy_consumed: 0.07510458396754072
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.306
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: splade-distilbert-base-uncased trained on Quora Duplicates Questions
    results:
      - task:
          type: sparse-binary-classification
          name: Sparse Binary Classification
        dataset:
          name: quora duplicates dev
          type: quora_duplicates_dev
        metrics:
          - type: cosine_accuracy
            value: 0.759
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.8012633323669434
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.6741573033707865
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.542455792427063
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.528169014084507
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9316770186335404
            name: Cosine Recall
          - type: cosine_ap
            value: 0.6875984052094628
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.5059561809366392
            name: Cosine Mcc
          - type: dot_accuracy
            value: 0.754
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 47.276466369628906
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.6759581881533101
            name: Dot F1
          - type: dot_f1_threshold
            value: 40.955284118652344
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.5398886827458256
            name: Dot Precision
          - type: dot_recall
            value: 0.9037267080745341
            name: Dot Recall
          - type: dot_ap
            value: 0.6070585464263578
            name: Dot Ap
          - type: dot_mcc
            value: 0.5042382773971489
            name: Dot Mcc
          - type: euclidean_accuracy
            value: 0.677
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: -14.295218467712402
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.48599545798637395
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: -0.5385364294052124
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.3213213213213213
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.9968944099378882
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.20430811061248494
            name: Euclidean Ap
          - type: euclidean_mcc
            value: -0.04590966956831287
            name: Euclidean Mcc
          - type: manhattan_accuracy
            value: 0.677
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: -163.6865234375
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.48599545798637395
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: -2.7509355545043945
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.3213213213213213
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.9968944099378882
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.20563864564607998
            name: Manhattan Ap
          - type: manhattan_mcc
            value: -0.04590966956831287
            name: Manhattan Mcc
          - type: max_accuracy
            value: 0.759
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 47.276466369628906
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.6759581881533101
            name: Max F1
          - type: max_f1_threshold
            value: 40.955284118652344
            name: Max F1 Threshold
          - type: max_precision
            value: 0.5398886827458256
            name: Max Precision
          - type: max_recall
            value: 0.9968944099378882
            name: Max Recall
          - type: max_ap
            value: 0.6875984052094628
            name: Max Ap
          - type: max_mcc
            value: 0.5059561809366392
            name: Max Mcc
          - type: active_dims
            value: 83.36341094970703
            name: Active Dims
          - type: sparsity_ratio
            value: 0.9972687434981421
            name: Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.24
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.44
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.56
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.74
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.24
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.14666666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.11200000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07400000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.24
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.44
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.56
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.74
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.46883808093835555
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.3849920634920634
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.39450094910993877
            name: Dot Map@100
          - type: query_active_dims
            value: 84.87999725341797
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9972190551977781
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 104.35554504394531
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9965809729033503
            name: Corpus Sparsity Ratio
          - type: dot_accuracy@1
            value: 0.24
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.44
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.74
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.24
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.14666666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.12000000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07400000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.24
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.44
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.6
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.74
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.46663046446554135
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.3821587301587301
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.39141822290426725
            name: Dot Map@100
          - type: query_active_dims
            value: 94.9000015258789
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9968907672653863
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 115.97699737548828
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9962002163234556
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.18
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.44
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.52
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.58
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.18
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.14666666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.10400000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.06000000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.17
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.41
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.48
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.55
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3711173352982992
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.32435714285714284
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.32104591506684527
            name: Dot Map@100
          - type: query_active_dims
            value: 76.81999969482422
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9974831269348396
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 139.53028869628906
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9954285338871539
            name: Corpus Sparsity Ratio
          - type: dot_accuracy@1
            value: 0.18
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.46
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.5
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.64
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.18
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.1533333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.10000000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.066
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.17
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.43
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.46
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.61
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.39277722565932277
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.33549999999999996
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3266050492721919
            name: Dot Map@100
          - type: query_active_dims
            value: 85.72000122070312
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9971915339354989
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 156.10665893554688
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.994885438079564
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.42
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.46
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.52
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.24
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.2
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.16
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.010055870806195594
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.03299225609257712
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.043240249260663235
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.0575687615260951
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.1901013298743406
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.3606904761904762
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.06747201795263198
            name: Dot Map@100
          - type: query_active_dims
            value: 92.18000030517578
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9969798833528217
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 196.1699981689453
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.993572832770823
            name: Corpus Sparsity Ratio
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.42
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.48
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.52
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.24666666666666665
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.21600000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.174
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.020055870806195596
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.03516880470242261
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.07436160102717629
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.08924749441772001
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2174721143005973
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.3753888888888888
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.08327101018955965
            name: Dot Map@100
          - type: query_active_dims
            value: 101.91999816894531
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9966607693411655
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 217.09109497070312
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9928873895887982
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: dot_accuracy@1
            value: 0.9
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.96
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.96
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 1
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.9
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.38666666666666655
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.24799999999999997
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13599999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.804
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.9053333333333333
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.9326666666666666
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.99
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.940813094731721
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.9366666666666665
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.9174399766899767
            name: Dot Map@100
          - type: query_active_dims
            value: 80.30000305175781
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9973691107053353
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 83.33353424072266
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9972697223563096
            name: Corpus Sparsity Ratio
          - type: dot_accuracy@1
            value: 0.9
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.96
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 1
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 1
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.9
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.38666666666666655
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.25599999999999995
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13599999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.804
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.9086666666666667
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.97
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.99
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.9434418368741703
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.94
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.9210437710437711
            name: Dot Map@100
          - type: query_active_dims
            value: 87.4000015258789
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9971364916609043
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 90.32620239257812
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.997040619802353
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.4
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.565
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.625
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.71
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.22999999999999998
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.166
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.10750000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.30601396770154893
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.4470813973564776
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5039767289818324
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5843921903815238
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4927174602106791
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5016765873015872
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4251147147048482
            name: Dot Map@100
          - type: query_active_dims
            value: 83.54500007629395
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9972627940476937
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 123.28323480743562
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9959608402199255
            name: Corpus Sparsity Ratio
          - type: dot_accuracy@1
            value: 0.4021664050235479
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5765463108320251
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6598116169544741
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7337833594976453
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4021664050235479
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.25656724228152794
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.20182103610675042
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.14312715855572997
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.23408727816164185
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.3568914414902249
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.4275402562349963
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5040607961406979
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.45167521970189345
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5088102589020956
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.37853024172675503
            name: Dot Map@100
          - type: query_active_dims
            value: 105.61787400444042
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9965396149005816
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 163.73635361872905
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9946354644643625
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.14
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.32
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.42
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.52
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.14
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.11333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.09200000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.064
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.07166666666666666
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.14833333333333332
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.19
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.25
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.1928494772790168
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.2526666666666666
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.14153388517603807
            name: Dot Map@100
          - type: query_active_dims
            value: 102.33999633789062
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9966470088350079
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 217.80722045898438
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9928639269884351
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: dot_accuracy@1
            value: 0.56
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.78
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.82
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.88
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.56
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5133333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.488
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.436
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.042268334576683116
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.1179684188048045
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.17514937366700764
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.2739338942789917
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5024388532207343
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6801666666666667
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.38220472918007364
            name: Dot Map@100
          - type: query_active_dims
            value: 79.80000305175781
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9973854923317031
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 146.68072509765625
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.995194262332165
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.64
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.72
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.82
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.88
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.64
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2533333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.176
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.6066666666666667
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.7033333333333333
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.8033333333333332
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.8633333333333333
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7368677901493659
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7063809523809523
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.697561348294107
            name: Dot Map@100
          - type: query_active_dims
            value: 104.22000122070312
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9965854137598879
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 228.74359130859375
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9925056159062776
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: dot_accuracy@1
            value: 0.2
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.28
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.4
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.46
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.2
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.12666666666666665
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.10400000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.09469047619047619
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.15076984126984128
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.25362698412698415
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.3211825396825397
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.23331922670891586
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.27135714285714285
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.18392178053045694
            name: Dot Map@100
          - type: query_active_dims
            value: 89.73999786376953
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9970598257694853
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 131.34085083007812
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9956968465097282
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: dot_accuracy@1
            value: 0.8
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.9
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.92
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.94
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.8
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3933333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.264
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.14200000000000002
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.4
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.59
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.66
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.71
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6848748058213975
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8541666666666665
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.6060670580971632
            name: Dot Map@100
          - type: query_active_dims
            value: 111.23999786376953
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9963554158356671
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 166.19056701660156
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9945550564505407
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.66
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.26
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.2
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.14200000000000002
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.07166666666666668
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.16066666666666665
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.20566666666666664
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.2916666666666667
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2850130343263586
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.47407142857142853
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.20070977606957205
            name: Dot Map@100
          - type: query_active_dims
            value: 113.77999877929688
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9962721971437226
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 226.21810913085938
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9925883589171464
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: dot_accuracy@1
            value: 0.08
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.32
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.38
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.44
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.08
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.10666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.07600000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.044000000000000004
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.08
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.32
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.38
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.44
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.26512761684329256
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.20850000000000002
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.2135415485154769
            name: Dot Map@100
          - type: query_active_dims
            value: 202.02000427246094
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9933811675423477
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 176.61155700683594
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.994213630921734
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: dot_accuracy@1
            value: 0.44
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.58
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.44
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.19999999999999996
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14800000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08599999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.415
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.55
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.665
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.76
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5848481832222858
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5400476190476191
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5247408283859897
            name: Dot Map@100
          - type: query_active_dims
            value: 102.4800033569336
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9966424217496581
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 216.64508056640625
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9929020024714499
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: dot_accuracy@1
            value: 0.40816326530612246
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7551020408163265
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8775510204081632
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9591836734693877
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.40816326530612246
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.43537414965986393
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.38367346938775504
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.3326530612244898
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.027119934527989286
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.08468167459585536
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.12088537223378343
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.21342642144981977
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.36611722725361623
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5941286038224813
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.24827413478914825
            name: Dot Map@100
          - type: query_active_dims
            value: 97.30612182617188
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9968119349378752
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 147.016357421875
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9951832659255005
            name: Corpus Sparsity Ratio

splade-distilbert-base-uncased trained on Quora Duplicates Questions

This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the quora-duplicates dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: distilbert/distilbert-base-uncased
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-quora-duplicates")
# Run inference
sentences = [
    'What accomplishments did Hillary Clinton achieve during her time as Secretary of State?',
    "What are Hillary Clinton's most recognized accomplishments while Secretary of State?",
    'What are Hillary Clinton’s qualifications to be President?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 83.9635,  60.9402,  26.0887],
#         [ 60.9402,  85.6474,  33.3293],
#         [ 26.0887,  33.3293, 104.0980]])

Evaluation

Metrics

Sparse Binary Classification

Metric Value
cosine_accuracy 0.759
cosine_accuracy_threshold 0.8013
cosine_f1 0.6742
cosine_f1_threshold 0.5425
cosine_precision 0.5282
cosine_recall 0.9317
cosine_ap 0.6876
cosine_mcc 0.506
dot_accuracy 0.754
dot_accuracy_threshold 47.2765
dot_f1 0.676
dot_f1_threshold 40.9553
dot_precision 0.5399
dot_recall 0.9037
dot_ap 0.6071
dot_mcc 0.5042
euclidean_accuracy 0.677
euclidean_accuracy_threshold -14.2952
euclidean_f1 0.486
euclidean_f1_threshold -0.5385
euclidean_precision 0.3213
euclidean_recall 0.9969
euclidean_ap 0.2043
euclidean_mcc -0.0459
manhattan_accuracy 0.677
manhattan_accuracy_threshold -163.6865
manhattan_f1 0.486
manhattan_f1_threshold -2.7509
manhattan_precision 0.3213
manhattan_recall 0.9969
manhattan_ap 0.2056
manhattan_mcc -0.0459
max_accuracy 0.759
max_accuracy_threshold 47.2765
max_f1 0.676
max_f1_threshold 40.9553
max_precision 0.5399
max_recall 0.9969
max_ap 0.6876
max_mcc 0.506
active_dims 83.3634
sparsity_ratio 0.9973

Sparse Information Retrieval

  • Datasets: NanoMSMARCO, NanoNQ, NanoNFCorpus, NanoQuoraRetrieval, NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoMSMARCO NanoNQ NanoNFCorpus NanoQuoraRetrieval NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.24 0.18 0.3 0.9 0.14 0.56 0.64 0.2 0.8 0.34 0.08 0.44 0.4082
dot_accuracy@3 0.44 0.46 0.42 0.96 0.32 0.78 0.72 0.28 0.9 0.56 0.32 0.58 0.7551
dot_accuracy@5 0.6 0.5 0.48 1.0 0.42 0.82 0.82 0.4 0.92 0.66 0.38 0.7 0.8776
dot_accuracy@10 0.74 0.64 0.52 1.0 0.52 0.88 0.88 0.46 0.94 0.78 0.44 0.78 0.9592
dot_precision@1 0.24 0.18 0.3 0.9 0.14 0.56 0.64 0.2 0.8 0.34 0.08 0.44 0.4082
dot_precision@3 0.1467 0.1533 0.2467 0.3867 0.1133 0.5133 0.2533 0.1267 0.3933 0.26 0.1067 0.2 0.4354
dot_precision@5 0.12 0.1 0.216 0.256 0.092 0.488 0.176 0.104 0.264 0.2 0.076 0.148 0.3837
dot_precision@10 0.074 0.066 0.174 0.136 0.064 0.436 0.094 0.07 0.142 0.142 0.044 0.086 0.3327
dot_recall@1 0.24 0.17 0.0201 0.804 0.0717 0.0423 0.6067 0.0947 0.4 0.0717 0.08 0.415 0.0271
dot_recall@3 0.44 0.43 0.0352 0.9087 0.1483 0.118 0.7033 0.1508 0.59 0.1607 0.32 0.55 0.0847
dot_recall@5 0.6 0.46 0.0744 0.97 0.19 0.1751 0.8033 0.2536 0.66 0.2057 0.38 0.665 0.1209
dot_recall@10 0.74 0.61 0.0892 0.99 0.25 0.2739 0.8633 0.3212 0.71 0.2917 0.44 0.76 0.2134
dot_ndcg@10 0.4666 0.3928 0.2175 0.9434 0.1928 0.5024 0.7369 0.2333 0.6849 0.285 0.2651 0.5848 0.3661
dot_mrr@10 0.3822 0.3355 0.3754 0.94 0.2527 0.6802 0.7064 0.2714 0.8542 0.4741 0.2085 0.54 0.5941
dot_map@100 0.3914 0.3266 0.0833 0.921 0.1415 0.3822 0.6976 0.1839 0.6061 0.2007 0.2135 0.5247 0.2483
query_active_dims 94.9 85.72 101.92 87.4 102.34 79.8 104.22 89.74 111.24 113.78 202.02 102.48 97.3061
query_sparsity_ratio 0.9969 0.9972 0.9967 0.9971 0.9966 0.9974 0.9966 0.9971 0.9964 0.9963 0.9934 0.9966 0.9968
corpus_active_dims 115.977 156.1067 217.0911 90.3262 217.8072 146.6807 228.7436 131.3409 166.1906 226.2181 176.6116 216.6451 147.0164
corpus_sparsity_ratio 0.9962 0.9949 0.9929 0.997 0.9929 0.9952 0.9925 0.9957 0.9946 0.9926 0.9942 0.9929 0.9952

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nq",
            "nfcorpus",
            "quoraretrieval"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4
dot_accuracy@3 0.565
dot_accuracy@5 0.625
dot_accuracy@10 0.71
dot_precision@1 0.4
dot_precision@3 0.23
dot_precision@5 0.166
dot_precision@10 0.1075
dot_recall@1 0.306
dot_recall@3 0.4471
dot_recall@5 0.504
dot_recall@10 0.5844
dot_ndcg@10 0.4927
dot_mrr@10 0.5017
dot_map@100 0.4251
query_active_dims 83.545
query_sparsity_ratio 0.9973
corpus_active_dims 123.2832
corpus_sparsity_ratio 0.996

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4022
dot_accuracy@3 0.5765
dot_accuracy@5 0.6598
dot_accuracy@10 0.7338
dot_precision@1 0.4022
dot_precision@3 0.2566
dot_precision@5 0.2018
dot_precision@10 0.1431
dot_recall@1 0.2341
dot_recall@3 0.3569
dot_recall@5 0.4275
dot_recall@10 0.5041
dot_ndcg@10 0.4517
dot_mrr@10 0.5088
dot_map@100 0.3785
query_active_dims 105.6179
query_sparsity_ratio 0.9965
corpus_active_dims 163.7364
corpus_sparsity_ratio 0.9946

Training Details

Training Dataset

quora-duplicates

  • Dataset: quora-duplicates at 451a485
  • Size: 99,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 14.1 tokens
    • max: 39 tokens
    • min: 6 tokens
    • mean: 13.83 tokens
    • max: 41 tokens
    • min: 6 tokens
    • mean: 15.21 tokens
    • max: 75 tokens
  • Samples:
    anchor positive negative
    What are the best GMAT coaching institutes in Delhi NCR? Which are the best GMAT coaching institutes in Delhi/NCR? What are the best GMAT coaching institutes in Delhi-Noida Area?
    Is a third world war coming? Is World War 3 more imminent than expected? Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?
    Should I build iOS or Android apps first? Should people choose Android or iOS first to build their App? How much more effort is it to build your app on both iOS and Android?
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 3e-05,
        "lambda_query": 5e-05
    }
    

Evaluation Dataset

quora-duplicates

  • Dataset: quora-duplicates at 451a485
  • Size: 1,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 14.05 tokens
    • max: 40 tokens
    • min: 6 tokens
    • mean: 14.14 tokens
    • max: 44 tokens
    • min: 6 tokens
    • mean: 14.56 tokens
    • max: 60 tokens
  • Samples:
    anchor positive negative
    What happens if we use petrol in diesel vehicles? Why can't we use petrol in diesel? Why are diesel engines noisier than petrol engines?
    Why is Saltwater taffy candy imported in Switzerland? Why is Saltwater taffy candy imported in Laos? Is salt a consumer product?
    Which is your favourite film in 2016? What movie is the best movie of 2016? What will the best movie of 2017 be?
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 3e-05,
        "lambda_query": 5e-05
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss quora_duplicates_dev_max_ap NanoMSMARCO_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10
0.0242 200 6.2275 - - - - - - - - - - - - - - - -
0.0485 400 0.4129 - - - - - - - - - - - - - - - -
0.0727 600 0.3238 - - - - - - - - - - - - - - - -
0.0970 800 0.2795 - - - - - - - - - - - - - - - -
0.1212 1000 0.255 - - - - - - - - - - - - - - - -
0.1455 1200 0.2367 - - - - - - - - - - - - - - - -
0.1697 1400 0.25 - - - - - - - - - - - - - - - -
0.1939 1600 0.2742 - - - - - - - - - - - - - - - -
0.2 1650 - 0.1914 0.6442 0.3107 0.2820 0.1991 0.8711 0.4157 - - - - - - - - -
0.2182 1800 0.2102 - - - - - - - - - - - - - - - -
0.2424 2000 0.1797 - - - - - - - - - - - - - - - -
0.2667 2200 0.2021 - - - - - - - - - - - - - - - -
0.2909 2400 0.1734 - - - - - - - - - - - - - - - -
0.3152 2600 0.1849 - - - - - - - - - - - - - - - -
0.3394 2800 0.1871 - - - - - - - - - - - - - - - -
0.3636 3000 0.1685 - - - - - - - - - - - - - - - -
0.3879 3200 0.1512 - - - - - - - - - - - - - - - -
0.4 3300 - 0.1139 0.6637 0.4200 0.3431 0.1864 0.9222 0.4679 - - - - - - - - -
0.4121 3400 0.1165 - - - - - - - - - - - - - - - -
0.4364 3600 0.1518 - - - - - - - - - - - - - - - -
0.4606 3800 0.1328 - - - - - - - - - - - - - - - -
0.4848 4000 0.1098 - - - - - - - - - - - - - - - -
0.5091 4200 0.1389 - - - - - - - - - - - - - - - -
0.5333 4400 0.1224 - - - - - - - - - - - - - - - -
0.5576 4600 0.09 - - - - - - - - - - - - - - - -
0.5818 4800 0.1162 - - - - - - - - - - - - - - - -
0.6 4950 - 0.0784 0.6666 0.4404 0.3688 0.2239 0.9478 0.4952 - - - - - - - - -
0.6061 5000 0.1054 - - - - - - - - - - - - - - - -
0.6303 5200 0.0949 - - - - - - - - - - - - - - - -
0.6545 5400 0.1315 - - - - - - - - - - - - - - - -
0.6788 5600 0.1246 - - - - - - - - - - - - - - - -
0.7030 5800 0.1047 - - - - - - - - - - - - - - - -
0.7273 6000 0.0861 - - - - - - - - - - - - - - - -
0.7515 6200 0.103 - - - - - - - - - - - - - - - -
0.7758 6400 0.1062 - - - - - - - - - - - - - - - -
0.8 6600 0.1275 0.0783 0.6856 0.4666 0.3928 0.2175 0.9434 0.5051 - - - - - - - - -
0.8242 6800 0.1131 - - - - - - - - - - - - - - - -
0.8485 7000 0.0651 - - - - - - - - - - - - - - - -
0.8727 7200 0.0657 - - - - - - - - - - - - - - - -
0.8970 7400 0.1065 - - - - - - - - - - - - - - - -
0.9212 7600 0.0691 - - - - - - - - - - - - - - - -
0.9455 7800 0.1136 - - - - - - - - - - - - - - - -
0.9697 8000 0.0834 - - - - - - - - - - - - - - - -
0.9939 8200 0.0867 - - - - - - - - - - - - - - - -
1.0 8250 - 0.0720 0.6876 0.4688 0.3711 0.1901 0.9408 0.4927 - - - - - - - - -
-1 -1 - - - 0.4666 0.3928 0.2175 0.9434 0.4517 0.1928 0.5024 0.7369 0.2333 0.6849 0.2850 0.2651 0.5848 0.3661
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.075 kWh
  • Carbon Emitted: 0.029 kg of CO2
  • Hours Used: 0.306 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }