trinhhuy/finetuned-opus-mt-en-vi
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-vi on harouzie/vi_en-translation dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1596
- Validation Loss: 0.2877
- Epoch: 3
- Bleu: 77.71982942978268
Model description
🧪 Quick Start
First, make sure to install the transformers
library:
pip install transformers
Option 1: Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("translation", model="trinhhuy/finetuned-opus-mt-en-vi")
result = pipe("I'm confident that my friend will pass the exam because he has been studying hard and staying focused for weeks.")
print(result)
[{'translation_text': 'Tôi tự tin rằng bạn tôi sẽ vượt qua kỳ thi vì anh ấy đã học tập chăm chỉ và tập trung nhiều tuần.'}]
Option 2: Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("trinhhuy/finetuned-opus-mt-en-vi")
model = AutoModelForSeq2SeqLM.from_pretrained("trinhhuy/finetuned-opus-mt-en-vi")
input_tokenized = tokenizer("I'm confident that my friend will pass the exam because he has been studying hard and staying focused for weeks.", return_tensors="pt")
output_tokenized = model.generate(**input_tokenized)
translated_text = tokenizer.decode(output_tokenized[0], skip_special_tokens=True)
print(translated_text)
Tôi tự tin rằng bạn tôi sẽ vượt qua kỳ thi vì anh ấy đã học tập chăm chỉ và tập trung nhiều tuần.
Training hyperparameters
The following hyperparameters were used during training:
- initial_learning_rate = 5e-05
- weight_decay_rate = 0.01
- training_precision: mixed_float16
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
0.4246 | 0.3235 | 0 |
0.2724 | 0.2977 | 1 |
0.2019 | 0.2887 | 2 |
0.1596 | 0.2877 | 3 |
Framework versions
- Transformers 4.53.3
- TensorFlow 2.18.0
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 49
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for trinhhuy/finetuned-opus-mt-en-vi
Base model
Helsinki-NLP/opus-mt-en-vi